#[non_exhaustive]pub struct Model {Show 15 fields
pub name: String,
pub display_name: String,
pub training_state: TrainingState,
pub serving_state: ServingState,
pub create_time: Option<Timestamp>,
pub update_time: Option<Timestamp>,
pub type: String,
pub optimization_objective: String,
pub periodic_tuning_state: PeriodicTuningState,
pub last_tune_time: Option<Timestamp>,
pub tuning_operation: String,
pub data_state: DataState,
pub filtering_option: RecommendationsFilteringOption,
pub serving_config_lists: Vec<ServingConfigList>,
pub model_features_config: Option<ModelFeaturesConfig>,
/* private fields */
}Expand description
Metadata that describes the training and serving parameters of a Model. A Model can be associated with a ServingConfig and then queried through the Predict API.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.name: StringRequired. The fully qualified resource name of the model.
Format:
projects/{project_number}/locations/{location_id}/catalogs/{catalog_id}/models/{model_id}
catalog_id has char limit of 50.
recommendation_model_id has char limit of 40.
display_name: StringRequired. The display name of the model.
Should be human readable, used to display Recommendation Models in the Retail Cloud Console Dashboard. UTF-8 encoded string with limit of 1024 characters.
training_state: TrainingStateOptional. The training state that the model is in (e.g.
TRAINING or PAUSED).
Since part of the cost of running the service
is frequency of training - this can be used to determine when to train
model in order to control cost. If not specified: the default value for
CreateModel method is TRAINING. The default value for
UpdateModel method is to keep the state the same as before.
serving_state: ServingStateOutput only. The serving state of the model: ACTIVE, NOT_ACTIVE.
create_time: Option<Timestamp>Output only. Timestamp the Recommendation Model was created at.
update_time: Option<Timestamp>Output only. Timestamp the Recommendation Model was last updated. E.g. if a Recommendation Model was paused - this would be the time the pause was initiated.
type: StringRequired. The type of model e.g. home-page.
Currently supported values: recommended-for-you, others-you-may-like,
frequently-bought-together, page-optimization, similar-items,
buy-it-again, on-sale-items, and recently-viewed(readonly value).
This field together with
optimization_objective
describe model metadata to use to control model training and serving.
See https://cloud.google.com/retail/docs/models
for more details on what the model metadata control and which combination
of parameters are valid. For invalid combinations of parameters (e.g. type
= frequently-bought-together and optimization_objective = ctr), you
receive an error 400 if you try to create/update a recommendation with
this set of knobs.
optimization_objective: StringOptional. The optimization objective e.g. cvr.
Currently supported
values: ctr, cvr, revenue-per-order.
If not specified, we choose default based on model type. Default depends on type of recommendation:
recommended-for-you => ctr
others-you-may-like => ctr
frequently-bought-together => revenue_per_order
This field together with
optimization_objective
describe model metadata to use to control model training and serving.
See https://cloud.google.com/retail/docs/models
for more details on what the model metadata control and which combination
of parameters are valid. For invalid combinations of parameters (e.g. type
= frequently-bought-together and optimization_objective = ctr), you
receive an error 400 if you try to create/update a recommendation with
this set of knobs.
periodic_tuning_state: PeriodicTuningStateOptional. The state of periodic tuning.
The period we use is 3 months - to do a
one-off tune earlier use the TuneModel method. Default value
is PERIODIC_TUNING_ENABLED.
last_tune_time: Option<Timestamp>Output only. The timestamp when the latest successful tune finished.
tuning_operation: StringOutput only. The tune operation associated with the model.
Can be used to determine if there is an ongoing tune for this recommendation. Empty field implies no tune is goig on.
data_state: DataStateOutput only. The state of data requirements for this model: DATA_OK and
DATA_ERROR.
Recommendation model cannot be trained if the data is in
DATA_ERROR state. Recommendation model can have DATA_ERROR state even
if serving state is ACTIVE: models were trained successfully before, but
cannot be refreshed because model no longer has sufficient
data for training.
filtering_option: RecommendationsFilteringOptionOptional. If RECOMMENDATIONS_FILTERING_ENABLED, recommendation filtering
by attributes is enabled for the model.
serving_config_lists: Vec<ServingConfigList>Output only. The list of valid serving configs associated with the PageOptimizationConfig.
model_features_config: Option<ModelFeaturesConfig>Optional. Additional model features config.
Implementations§
Source§impl Model
impl Model
pub fn new() -> Self
Sourcepub fn set_display_name<T: Into<String>>(self, v: T) -> Self
pub fn set_display_name<T: Into<String>>(self, v: T) -> Self
Sourcepub fn set_training_state<T: Into<TrainingState>>(self, v: T) -> Self
pub fn set_training_state<T: Into<TrainingState>>(self, v: T) -> Self
Sets the value of training_state.
§Example
use google_cloud_retail_v2::model::model::TrainingState;
let x0 = Model::new().set_training_state(TrainingState::Paused);
let x1 = Model::new().set_training_state(TrainingState::Training);Sourcepub fn set_serving_state<T: Into<ServingState>>(self, v: T) -> Self
pub fn set_serving_state<T: Into<ServingState>>(self, v: T) -> Self
Sets the value of serving_state.
§Example
use google_cloud_retail_v2::model::model::ServingState;
let x0 = Model::new().set_serving_state(ServingState::Inactive);
let x1 = Model::new().set_serving_state(ServingState::Active);
let x2 = Model::new().set_serving_state(ServingState::Tuned);Sourcepub fn set_create_time<T>(self, v: T) -> Self
pub fn set_create_time<T>(self, v: T) -> Self
Sets the value of create_time.
§Example
use wkt::Timestamp;
let x = Model::new().set_create_time(Timestamp::default()/* use setters */);Sourcepub fn set_or_clear_create_time<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_create_time<T>(self, v: Option<T>) -> Self
Sets or clears the value of create_time.
§Example
use wkt::Timestamp;
let x = Model::new().set_or_clear_create_time(Some(Timestamp::default()/* use setters */));
let x = Model::new().set_or_clear_create_time(None::<Timestamp>);Sourcepub fn set_update_time<T>(self, v: T) -> Self
pub fn set_update_time<T>(self, v: T) -> Self
Sets the value of update_time.
§Example
use wkt::Timestamp;
let x = Model::new().set_update_time(Timestamp::default()/* use setters */);Sourcepub fn set_or_clear_update_time<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_update_time<T>(self, v: Option<T>) -> Self
Sets or clears the value of update_time.
§Example
use wkt::Timestamp;
let x = Model::new().set_or_clear_update_time(Some(Timestamp::default()/* use setters */));
let x = Model::new().set_or_clear_update_time(None::<Timestamp>);Sourcepub fn set_optimization_objective<T: Into<String>>(self, v: T) -> Self
pub fn set_optimization_objective<T: Into<String>>(self, v: T) -> Self
Sets the value of optimization_objective.
§Example
let x = Model::new().set_optimization_objective("example");Sourcepub fn set_periodic_tuning_state<T: Into<PeriodicTuningState>>(
self,
v: T,
) -> Self
pub fn set_periodic_tuning_state<T: Into<PeriodicTuningState>>( self, v: T, ) -> Self
Sets the value of periodic_tuning_state.
§Example
use google_cloud_retail_v2::model::model::PeriodicTuningState;
let x0 = Model::new().set_periodic_tuning_state(PeriodicTuningState::PeriodicTuningDisabled);
let x1 = Model::new().set_periodic_tuning_state(PeriodicTuningState::AllTuningDisabled);
let x2 = Model::new().set_periodic_tuning_state(PeriodicTuningState::PeriodicTuningEnabled);Sourcepub fn set_last_tune_time<T>(self, v: T) -> Self
pub fn set_last_tune_time<T>(self, v: T) -> Self
Sets the value of last_tune_time.
§Example
use wkt::Timestamp;
let x = Model::new().set_last_tune_time(Timestamp::default()/* use setters */);Sourcepub fn set_or_clear_last_tune_time<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_last_tune_time<T>(self, v: Option<T>) -> Self
Sets or clears the value of last_tune_time.
§Example
use wkt::Timestamp;
let x = Model::new().set_or_clear_last_tune_time(Some(Timestamp::default()/* use setters */));
let x = Model::new().set_or_clear_last_tune_time(None::<Timestamp>);Sourcepub fn set_tuning_operation<T: Into<String>>(self, v: T) -> Self
pub fn set_tuning_operation<T: Into<String>>(self, v: T) -> Self
Sourcepub fn set_data_state<T: Into<DataState>>(self, v: T) -> Self
pub fn set_data_state<T: Into<DataState>>(self, v: T) -> Self
Sets the value of data_state.
§Example
use google_cloud_retail_v2::model::model::DataState;
let x0 = Model::new().set_data_state(DataState::DataOk);
let x1 = Model::new().set_data_state(DataState::DataError);Sourcepub fn set_filtering_option<T: Into<RecommendationsFilteringOption>>(
self,
v: T,
) -> Self
pub fn set_filtering_option<T: Into<RecommendationsFilteringOption>>( self, v: T, ) -> Self
Sets the value of filtering_option.
§Example
use google_cloud_retail_v2::model::RecommendationsFilteringOption;
let x0 = Model::new().set_filtering_option(RecommendationsFilteringOption::RecommendationsFilteringDisabled);
let x1 = Model::new().set_filtering_option(RecommendationsFilteringOption::RecommendationsFilteringEnabled);Sourcepub fn set_serving_config_lists<T, V>(self, v: T) -> Self
pub fn set_serving_config_lists<T, V>(self, v: T) -> Self
Sets the value of serving_config_lists.
§Example
use google_cloud_retail_v2::model::model::ServingConfigList;
let x = Model::new()
.set_serving_config_lists([
ServingConfigList::default()/* use setters */,
ServingConfigList::default()/* use (different) setters */,
]);Sourcepub fn set_model_features_config<T>(self, v: T) -> Selfwhere
T: Into<ModelFeaturesConfig>,
pub fn set_model_features_config<T>(self, v: T) -> Selfwhere
T: Into<ModelFeaturesConfig>,
Sets the value of model_features_config.
§Example
use google_cloud_retail_v2::model::model::ModelFeaturesConfig;
let x = Model::new().set_model_features_config(ModelFeaturesConfig::default()/* use setters */);Sourcepub fn set_or_clear_model_features_config<T>(self, v: Option<T>) -> Selfwhere
T: Into<ModelFeaturesConfig>,
pub fn set_or_clear_model_features_config<T>(self, v: Option<T>) -> Selfwhere
T: Into<ModelFeaturesConfig>,
Sets or clears the value of model_features_config.
§Example
use google_cloud_retail_v2::model::model::ModelFeaturesConfig;
let x = Model::new().set_or_clear_model_features_config(Some(ModelFeaturesConfig::default()/* use setters */));
let x = Model::new().set_or_clear_model_features_config(None::<ModelFeaturesConfig>);