#[non_exhaustive]pub struct InferenceParameter {
pub max_output_tokens: Option<i32>,
pub temperature: Option<f64>,
pub top_k: Option<i32>,
pub top_p: Option<f64>,
/* private fields */
}conversations or generator-evaluations or generators only.Expand description
The parameters of inference.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.max_output_tokens: Option<i32>Optional. Maximum number of the output tokens for the generator.
temperature: Option<f64>Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
top_k: Option<i32>Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model’s vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
top_p: Option<f64>Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn’t consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
Implementations§
Source§impl InferenceParameter
impl InferenceParameter
pub fn new() -> Self
Sourcepub fn set_max_output_tokens<T>(self, v: T) -> Self
pub fn set_max_output_tokens<T>(self, v: T) -> Self
Sets the value of max_output_tokens.
§Example
let x = InferenceParameter::new().set_max_output_tokens(42);Sourcepub fn set_or_clear_max_output_tokens<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_max_output_tokens<T>(self, v: Option<T>) -> Self
Sets or clears the value of max_output_tokens.
§Example
let x = InferenceParameter::new().set_or_clear_max_output_tokens(Some(42));
let x = InferenceParameter::new().set_or_clear_max_output_tokens(None::<i32>);Sourcepub fn set_temperature<T>(self, v: T) -> Self
pub fn set_temperature<T>(self, v: T) -> Self
Sourcepub fn set_or_clear_temperature<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_temperature<T>(self, v: Option<T>) -> Self
Sets or clears the value of temperature.
§Example
let x = InferenceParameter::new().set_or_clear_temperature(Some(42.0));
let x = InferenceParameter::new().set_or_clear_temperature(None::<f32>);Sourcepub fn set_or_clear_top_k<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_top_k<T>(self, v: Option<T>) -> Self
Trait Implementations§
Source§impl Clone for InferenceParameter
impl Clone for InferenceParameter
Source§fn clone(&self) -> InferenceParameter
fn clone(&self) -> InferenceParameter
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more