pub struct ArimaSingleModelForecastingMetrics {
pub non_seasonal_order: Option<ArimaOrder>,
pub arima_fitting_metrics: Option<ArimaFittingMetrics>,
pub has_drift: Option<bool>,
pub time_series_id: Option<String>,
pub time_series_ids: Option<Vec<String>>,
pub seasonal_periods: Option<Vec<SeasonalPeriodType>>,
pub has_holiday_effect: Option<bool>,
pub has_spikes_and_dips: Option<bool>,
pub has_step_changes: Option<bool>,
}Fields§
§non_seasonal_order: Option<ArimaOrder>Non-seasonal order.
arima_fitting_metrics: Option<ArimaFittingMetrics>Arima fitting metrics.
has_drift: Option<bool>Is arima model fitted with drift or not. It is always false when d is not 1.
time_series_id: Option<String>The timeSeriesId value for this time series. It will be one of the unique values from the timeSeriesIdColumn specified during ARIMA model training. Only present when timeSeriesIdColumn training option was used.
time_series_ids: Option<Vec<String>>The tuple of timeSeriesIds identifying this time series. It will be one of the unique tuples of values present in the timeSeriesIdColumns specified during ARIMA model training. Only present when timeSeriesIdColumns training option was used and the order of values here are same as the order of timeSeriesIdColumns.
seasonal_periods: Option<Vec<SeasonalPeriodType>>Seasonal periods. Repeated because multiple periods are supported for one time series.
has_holiday_effect: Option<bool>If true, holiday_effect is a part of time series decomposition result.
has_spikes_and_dips: Option<bool>If true, spikes_and_dips is a part of time series decomposition result.
has_step_changes: Option<bool>If true, step_changes is a part of time series decomposition result.
Trait Implementations§
source§impl Clone for ArimaSingleModelForecastingMetrics
impl Clone for ArimaSingleModelForecastingMetrics
source§fn clone(&self) -> ArimaSingleModelForecastingMetrics
fn clone(&self) -> ArimaSingleModelForecastingMetrics
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl Default for ArimaSingleModelForecastingMetrics
impl Default for ArimaSingleModelForecastingMetrics
source§fn default() -> ArimaSingleModelForecastingMetrics
fn default() -> ArimaSingleModelForecastingMetrics
source§impl<'de> Deserialize<'de> for ArimaSingleModelForecastingMetrics
impl<'de> Deserialize<'de> for ArimaSingleModelForecastingMetrics
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
source§impl PartialEq for ArimaSingleModelForecastingMetrics
impl PartialEq for ArimaSingleModelForecastingMetrics
source§fn eq(&self, other: &ArimaSingleModelForecastingMetrics) -> bool
fn eq(&self, other: &ArimaSingleModelForecastingMetrics) -> bool
self and other values to be equal, and is used
by ==.impl StructuralPartialEq for ArimaSingleModelForecastingMetrics
Auto Trait Implementations§
impl Freeze for ArimaSingleModelForecastingMetrics
impl RefUnwindSafe for ArimaSingleModelForecastingMetrics
impl Send for ArimaSingleModelForecastingMetrics
impl Sync for ArimaSingleModelForecastingMetrics
impl Unpin for ArimaSingleModelForecastingMetrics
impl UnwindSafe for ArimaSingleModelForecastingMetrics
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T in a tonic::Request