pub struct AggregateClassificationMetrics {
pub precision: Option<f64>,
pub recall: Option<f64>,
pub accuracy: Option<f64>,
pub threshold: Option<f64>,
pub f1_score: Option<f64>,
pub log_loss: Option<f64>,
pub roc_auc: Option<f64>,
}Fields§
§precision: Option<f64>Precision is the fraction of actual positive predictions that had positive actual labels. For multiclass this is a macro-averaged metric treating each class as a binary classifier.
recall: Option<f64>Recall is the fraction of actual positive labels that were given a positive prediction. For multiclass this is a macro-averaged metric.
accuracy: Option<f64>Accuracy is the fraction of predictions given the correct label. For multiclass this is a micro-averaged metric.
threshold: Option<f64>Threshold at which the metrics are computed. For binary classification models this is the positive class threshold. For multi-class classfication models this is the confidence threshold.
f1_score: Option<f64>The F1 score is an average of recall and precision. For multiclass this is a macro-averaged metric.
log_loss: Option<f64>Logarithmic Loss. For multiclass this is a macro-averaged metric.
roc_auc: Option<f64>Area Under a ROC Curve. For multiclass this is a macro-averaged metric.
Trait Implementations§
source§impl Clone for AggregateClassificationMetrics
impl Clone for AggregateClassificationMetrics
source§fn clone(&self) -> AggregateClassificationMetrics
fn clone(&self) -> AggregateClassificationMetrics
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl Default for AggregateClassificationMetrics
impl Default for AggregateClassificationMetrics
source§fn default() -> AggregateClassificationMetrics
fn default() -> AggregateClassificationMetrics
source§impl<'de> Deserialize<'de> for AggregateClassificationMetrics
impl<'de> Deserialize<'de> for AggregateClassificationMetrics
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
source§impl PartialEq for AggregateClassificationMetrics
impl PartialEq for AggregateClassificationMetrics
source§fn eq(&self, other: &AggregateClassificationMetrics) -> bool
fn eq(&self, other: &AggregateClassificationMetrics) -> bool
self and other values to be equal, and is used
by ==.impl StructuralPartialEq for AggregateClassificationMetrics
Auto Trait Implementations§
impl Freeze for AggregateClassificationMetrics
impl RefUnwindSafe for AggregateClassificationMetrics
impl Send for AggregateClassificationMetrics
impl Sync for AggregateClassificationMetrics
impl Unpin for AggregateClassificationMetrics
impl UnwindSafe for AggregateClassificationMetrics
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> Instrument for T
impl<T> Instrument for T
source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T in a tonic::Request