#[non_exhaustive]pub struct FeatureStatsAnomaly {
pub score: f64,
pub stats_uri: String,
pub anomaly_uri: String,
pub distribution_deviation: f64,
pub anomaly_detection_threshold: f64,
pub start_time: Option<Timestamp>,
pub end_time: Option<Timestamp>,
/* private fields */
}feature-registry-service or featurestore-service or job-service only.Expand description
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.score: f64Feature importance score, only populated when cross-feature monitoring is enabled. For now only used to represent feature attribution score within range [0, 1] for ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_SKEW and ModelDeploymentMonitoringObjectiveType.FEATURE_ATTRIBUTION_DRIFT.
stats_uri: StringPath of the stats file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/stats. Example: gs://monitoring_bucket/feature_name/stats. Stats are stored as binary format with Protobuf message tensorflow.metadata.v0.FeatureNameStatistics.
anomaly_uri: StringPath of the anomaly file for current feature values in Cloud Storage bucket. Format: gs://<bucket_name>/<object_name>/anomalies. Example: gs://monitoring_bucket/feature_name/anomalies. Stats are stored as binary format with Protobuf message Anoamlies are stored as binary format with Protobuf message [tensorflow.metadata.v0.AnomalyInfo] (https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/anomalies.proto).
distribution_deviation: f64Deviation from the current stats to baseline stats.
- For categorical feature, the distribution distance is calculated by L-inifinity norm.
- For numerical feature, the distribution distance is calculated by Jensen–Shannon divergence.
anomaly_detection_threshold: f64This is the threshold used when detecting anomalies. The threshold can be changed by user, so this one might be different from ThresholdConfig.value.
start_time: Option<Timestamp>The start timestamp of window where stats were generated. For objectives where time window doesn’t make sense (e.g. Featurestore Snapshot Monitoring), start_time is only used to indicate the monitoring intervals, so it always equals to (end_time - monitoring_interval).
end_time: Option<Timestamp>The end timestamp of window where stats were generated. For objectives where time window doesn’t make sense (e.g. Featurestore Snapshot Monitoring), end_time indicates the timestamp of the data used to generate stats (e.g. timestamp we take snapshots for feature values).
Implementations§
Source§impl FeatureStatsAnomaly
impl FeatureStatsAnomaly
pub fn new() -> Self
Sourcepub fn set_stats_uri<T: Into<String>>(self, v: T) -> Self
pub fn set_stats_uri<T: Into<String>>(self, v: T) -> Self
Sourcepub fn set_anomaly_uri<T: Into<String>>(self, v: T) -> Self
pub fn set_anomaly_uri<T: Into<String>>(self, v: T) -> Self
Sets the value of anomaly_uri.
§Example
let x = FeatureStatsAnomaly::new().set_anomaly_uri("example");Sourcepub fn set_distribution_deviation<T: Into<f64>>(self, v: T) -> Self
pub fn set_distribution_deviation<T: Into<f64>>(self, v: T) -> Self
Sets the value of distribution_deviation.
§Example
let x = FeatureStatsAnomaly::new().set_distribution_deviation(42.0);Sourcepub fn set_anomaly_detection_threshold<T: Into<f64>>(self, v: T) -> Self
pub fn set_anomaly_detection_threshold<T: Into<f64>>(self, v: T) -> Self
Sets the value of anomaly_detection_threshold.
§Example
let x = FeatureStatsAnomaly::new().set_anomaly_detection_threshold(42.0);Sourcepub fn set_start_time<T>(self, v: T) -> Self
pub fn set_start_time<T>(self, v: T) -> Self
Sets the value of start_time.
§Example
use wkt::Timestamp;
let x = FeatureStatsAnomaly::new().set_start_time(Timestamp::default()/* use setters */);Sourcepub fn set_or_clear_start_time<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_start_time<T>(self, v: Option<T>) -> Self
Sets or clears the value of start_time.
§Example
use wkt::Timestamp;
let x = FeatureStatsAnomaly::new().set_or_clear_start_time(Some(Timestamp::default()/* use setters */));
let x = FeatureStatsAnomaly::new().set_or_clear_start_time(None::<Timestamp>);Sourcepub fn set_end_time<T>(self, v: T) -> Self
pub fn set_end_time<T>(self, v: T) -> Self
Sourcepub fn set_or_clear_end_time<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_end_time<T>(self, v: Option<T>) -> Self
Trait Implementations§
Source§impl Clone for FeatureStatsAnomaly
impl Clone for FeatureStatsAnomaly
Source§fn clone(&self) -> FeatureStatsAnomaly
fn clone(&self) -> FeatureStatsAnomaly
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more