#[non_exhaustive]pub struct DataLabelingJob {Show 18 fields
pub name: String,
pub display_name: String,
pub datasets: Vec<String>,
pub annotation_labels: HashMap<String, String>,
pub labeler_count: i32,
pub instruction_uri: String,
pub inputs_schema_uri: String,
pub inputs: Option<Value>,
pub state: JobState,
pub labeling_progress: i32,
pub current_spend: Option<Money>,
pub create_time: Option<Timestamp>,
pub update_time: Option<Timestamp>,
pub error: Option<Status>,
pub labels: HashMap<String, String>,
pub specialist_pools: Vec<String>,
pub encryption_spec: Option<EncryptionSpec>,
pub active_learning_config: Option<ActiveLearningConfig>,
/* private fields */
}job-service only.Expand description
DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.name: StringOutput only. Resource name of the DataLabelingJob.
display_name: StringRequired. The user-defined name of the DataLabelingJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a DataLabelingJob.
datasets: Vec<String>Required. Dataset resource names. Right now we only support labeling from a
single Dataset. Format:
projects/{project}/locations/{location}/datasets/{dataset}
annotation_labels: HashMap<String, String>Labels to assign to annotations generated by this DataLabelingJob.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable.
labeler_count: i32Required. Number of labelers to work on each DataItem.
instruction_uri: StringRequired. The Google Cloud Storage location of the instruction pdf. This pdf is shared with labelers, and provides detailed description on how to label DataItems in Datasets.
inputs_schema_uri: StringRequired. Points to a YAML file stored on Google Cloud Storage describing the config for a specific type of DataLabelingJob. The schema files that can be used here are found in the https://storage.googleapis.com/google-cloud-aiplatform bucket in the /schema/datalabelingjob/inputs/ folder.
inputs: Option<Value>Required. Input config parameters for the DataLabelingJob.
state: JobStateOutput only. The detailed state of the job.
labeling_progress: i32Output only. Current labeling job progress percentage scaled in interval [0, 100], indicating the percentage of DataItems that has been finished.
current_spend: Option<Money>Output only. Estimated cost(in US dollars) that the DataLabelingJob has incurred to date.
create_time: Option<Timestamp>Output only. Timestamp when this DataLabelingJob was created.
update_time: Option<Timestamp>Output only. Timestamp when this DataLabelingJob was updated most recently.
error: Option<Status>Output only. DataLabelingJob errors. It is only populated when job’s state
is JOB_STATE_FAILED or JOB_STATE_CANCELLED.
labels: HashMap<String, String>The labels with user-defined metadata to organize your DataLabelingJobs.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with “aiplatform.googleapis.com/” and are immutable. Following system labels exist for each DataLabelingJob:
- “aiplatform.googleapis.com/schema”: output only, its value is the inputs_schema’s title.
specialist_pools: Vec<String>The SpecialistPools’ resource names associated with this job.
encryption_spec: Option<EncryptionSpec>Customer-managed encryption key spec for a DataLabelingJob. If set, this DataLabelingJob will be secured by this key.
Note: Annotations created in the DataLabelingJob are associated with the EncryptionSpec of the Dataset they are exported to.
active_learning_config: Option<ActiveLearningConfig>Parameters that configure the active learning pipeline. Active learning will label the data incrementally via several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
Implementations§
Source§impl DataLabelingJob
impl DataLabelingJob
pub fn new() -> Self
Sourcepub fn set_display_name<T: Into<String>>(self, v: T) -> Self
pub fn set_display_name<T: Into<String>>(self, v: T) -> Self
Sets the value of display_name.
§Example
let x = DataLabelingJob::new().set_display_name("example");Sourcepub fn set_datasets<T, V>(self, v: T) -> Self
pub fn set_datasets<T, V>(self, v: T) -> Self
Sourcepub fn set_annotation_labels<T, K, V>(self, v: T) -> Self
pub fn set_annotation_labels<T, K, V>(self, v: T) -> Self
Sets the value of annotation_labels.
§Example
let x = DataLabelingJob::new().set_annotation_labels([
("key0", "abc"),
("key1", "xyz"),
]);Sourcepub fn set_labeler_count<T: Into<i32>>(self, v: T) -> Self
pub fn set_labeler_count<T: Into<i32>>(self, v: T) -> Self
Sourcepub fn set_instruction_uri<T: Into<String>>(self, v: T) -> Self
pub fn set_instruction_uri<T: Into<String>>(self, v: T) -> Self
Sets the value of instruction_uri.
§Example
let x = DataLabelingJob::new().set_instruction_uri("example");Sourcepub fn set_inputs_schema_uri<T: Into<String>>(self, v: T) -> Self
pub fn set_inputs_schema_uri<T: Into<String>>(self, v: T) -> Self
Sets the value of inputs_schema_uri.
§Example
let x = DataLabelingJob::new().set_inputs_schema_uri("example");Sourcepub fn set_inputs<T>(self, v: T) -> Self
pub fn set_inputs<T>(self, v: T) -> Self
Sourcepub fn set_or_clear_inputs<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_inputs<T>(self, v: Option<T>) -> Self
Sourcepub fn set_labeling_progress<T: Into<i32>>(self, v: T) -> Self
pub fn set_labeling_progress<T: Into<i32>>(self, v: T) -> Self
Sets the value of labeling_progress.
§Example
let x = DataLabelingJob::new().set_labeling_progress(42);Sourcepub fn set_current_spend<T>(self, v: T) -> Self
pub fn set_current_spend<T>(self, v: T) -> Self
Sets the value of current_spend.
§Example
use gtype::model::Money;
let x = DataLabelingJob::new().set_current_spend(Money::default()/* use setters */);Sourcepub fn set_or_clear_current_spend<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_current_spend<T>(self, v: Option<T>) -> Self
Sets or clears the value of current_spend.
§Example
use gtype::model::Money;
let x = DataLabelingJob::new().set_or_clear_current_spend(Some(Money::default()/* use setters */));
let x = DataLabelingJob::new().set_or_clear_current_spend(None::<Money>);Sourcepub fn set_create_time<T>(self, v: T) -> Self
pub fn set_create_time<T>(self, v: T) -> Self
Sets the value of create_time.
§Example
use wkt::Timestamp;
let x = DataLabelingJob::new().set_create_time(Timestamp::default()/* use setters */);Sourcepub fn set_or_clear_create_time<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_create_time<T>(self, v: Option<T>) -> Self
Sets or clears the value of create_time.
§Example
use wkt::Timestamp;
let x = DataLabelingJob::new().set_or_clear_create_time(Some(Timestamp::default()/* use setters */));
let x = DataLabelingJob::new().set_or_clear_create_time(None::<Timestamp>);Sourcepub fn set_update_time<T>(self, v: T) -> Self
pub fn set_update_time<T>(self, v: T) -> Self
Sets the value of update_time.
§Example
use wkt::Timestamp;
let x = DataLabelingJob::new().set_update_time(Timestamp::default()/* use setters */);Sourcepub fn set_or_clear_update_time<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_update_time<T>(self, v: Option<T>) -> Self
Sets or clears the value of update_time.
§Example
use wkt::Timestamp;
let x = DataLabelingJob::new().set_or_clear_update_time(Some(Timestamp::default()/* use setters */));
let x = DataLabelingJob::new().set_or_clear_update_time(None::<Timestamp>);Sourcepub fn set_or_clear_error<T>(self, v: Option<T>) -> Self
pub fn set_or_clear_error<T>(self, v: Option<T>) -> Self
Sourcepub fn set_labels<T, K, V>(self, v: T) -> Self
pub fn set_labels<T, K, V>(self, v: T) -> Self
Sourcepub fn set_specialist_pools<T, V>(self, v: T) -> Self
pub fn set_specialist_pools<T, V>(self, v: T) -> Self
Sets the value of specialist_pools.
§Example
let x = DataLabelingJob::new().set_specialist_pools(["a", "b", "c"]);Sourcepub fn set_encryption_spec<T>(self, v: T) -> Selfwhere
T: Into<EncryptionSpec>,
pub fn set_encryption_spec<T>(self, v: T) -> Selfwhere
T: Into<EncryptionSpec>,
Sets the value of encryption_spec.
§Example
use google_cloud_aiplatform_v1::model::EncryptionSpec;
let x = DataLabelingJob::new().set_encryption_spec(EncryptionSpec::default()/* use setters */);Sourcepub fn set_or_clear_encryption_spec<T>(self, v: Option<T>) -> Selfwhere
T: Into<EncryptionSpec>,
pub fn set_or_clear_encryption_spec<T>(self, v: Option<T>) -> Selfwhere
T: Into<EncryptionSpec>,
Sets or clears the value of encryption_spec.
§Example
use google_cloud_aiplatform_v1::model::EncryptionSpec;
let x = DataLabelingJob::new().set_or_clear_encryption_spec(Some(EncryptionSpec::default()/* use setters */));
let x = DataLabelingJob::new().set_or_clear_encryption_spec(None::<EncryptionSpec>);Sourcepub fn set_active_learning_config<T>(self, v: T) -> Selfwhere
T: Into<ActiveLearningConfig>,
pub fn set_active_learning_config<T>(self, v: T) -> Selfwhere
T: Into<ActiveLearningConfig>,
Sets the value of active_learning_config.
§Example
use google_cloud_aiplatform_v1::model::ActiveLearningConfig;
let x = DataLabelingJob::new().set_active_learning_config(ActiveLearningConfig::default()/* use setters */);Sourcepub fn set_or_clear_active_learning_config<T>(self, v: Option<T>) -> Selfwhere
T: Into<ActiveLearningConfig>,
pub fn set_or_clear_active_learning_config<T>(self, v: Option<T>) -> Selfwhere
T: Into<ActiveLearningConfig>,
Sets or clears the value of active_learning_config.
§Example
use google_cloud_aiplatform_v1::model::ActiveLearningConfig;
let x = DataLabelingJob::new().set_or_clear_active_learning_config(Some(ActiveLearningConfig::default()/* use setters */));
let x = DataLabelingJob::new().set_or_clear_active_learning_config(None::<ActiveLearningConfig>);Trait Implementations§
Source§impl Clone for DataLabelingJob
impl Clone for DataLabelingJob
Source§fn clone(&self) -> DataLabelingJob
fn clone(&self) -> DataLabelingJob
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more