ModelDeploymentMonitoringJob

Struct ModelDeploymentMonitoringJob 

Source
#[non_exhaustive]
pub struct ModelDeploymentMonitoringJob {
Show 25 fields pub name: String, pub display_name: String, pub endpoint: String, pub state: JobState, pub schedule_state: MonitoringScheduleState, pub latest_monitoring_pipeline_metadata: Option<LatestMonitoringPipelineMetadata>, pub model_deployment_monitoring_objective_configs: Vec<ModelDeploymentMonitoringObjectiveConfig>, pub model_deployment_monitoring_schedule_config: Option<ModelDeploymentMonitoringScheduleConfig>, pub logging_sampling_strategy: Option<SamplingStrategy>, pub model_monitoring_alert_config: Option<ModelMonitoringAlertConfig>, pub predict_instance_schema_uri: String, pub sample_predict_instance: Option<Value>, pub analysis_instance_schema_uri: String, pub bigquery_tables: Vec<ModelDeploymentMonitoringBigQueryTable>, pub log_ttl: Option<Duration>, pub labels: HashMap<String, String>, pub create_time: Option<Timestamp>, pub update_time: Option<Timestamp>, pub next_schedule_time: Option<Timestamp>, pub stats_anomalies_base_directory: Option<GcsDestination>, pub encryption_spec: Option<EncryptionSpec>, pub enable_monitoring_pipeline_logs: bool, pub error: Option<Status>, pub satisfies_pzs: bool, pub satisfies_pzi: bool, /* private fields */
}
Available on crate feature job-service only.
Expand description

Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§name: String

Output only. Resource name of a ModelDeploymentMonitoringJob.

§display_name: String

Required. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob.

§endpoint: String

Required. Endpoint resource name. Format: projects/{project}/locations/{location}/endpoints/{endpoint}

§state: JobState

Output only. The detailed state of the monitoring job. When the job is still creating, the state will be ‘PENDING’. Once the job is successfully created, the state will be ‘RUNNING’. Pause the job, the state will be ‘PAUSED’. Resume the job, the state will return to ‘RUNNING’.

§schedule_state: MonitoringScheduleState

Output only. Schedule state when the monitoring job is in Running state.

§latest_monitoring_pipeline_metadata: Option<LatestMonitoringPipelineMetadata>

Output only. Latest triggered monitoring pipeline metadata.

§model_deployment_monitoring_objective_configs: Vec<ModelDeploymentMonitoringObjectiveConfig>

Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.

§model_deployment_monitoring_schedule_config: Option<ModelDeploymentMonitoringScheduleConfig>

Required. Schedule config for running the monitoring job.

§logging_sampling_strategy: Option<SamplingStrategy>

Required. Sample Strategy for logging.

§model_monitoring_alert_config: Option<ModelMonitoringAlertConfig>

Alert config for model monitoring.

§predict_instance_schema_uri: String

YAML schema file uri describing the format of a single instance, which are given to format this Endpoint’s prediction (and explanation). If not set, we will generate predict schema from collected predict requests.

§sample_predict_instance: Option<Value>

Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests.

§analysis_instance_schema_uri: String

YAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.

If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string.

§bigquery_tables: Vec<ModelDeploymentMonitoringBigQueryTable>

Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:

  1. Training data logging predict request/response
  2. Serving data logging predict request/response
§log_ttl: Option<Duration>

The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. { second: 3600} indicates ttl = 1 day.

§labels: HashMap<String, String>

The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.

Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.

See https://goo.gl/xmQnxf for more information and examples of labels.

§create_time: Option<Timestamp>

Output only. Timestamp when this ModelDeploymentMonitoringJob was created.

§update_time: Option<Timestamp>

Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently.

§next_schedule_time: Option<Timestamp>

Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round.

§stats_anomalies_base_directory: Option<GcsDestination>

Stats anomalies base folder path.

§encryption_spec: Option<EncryptionSpec>

Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If set, this ModelDeploymentMonitoringJob and all sub-resources of this ModelDeploymentMonitoringJob will be secured by this key.

§enable_monitoring_pipeline_logs: bool

If true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing.

§error: Option<Status>

Output only. Only populated when the job’s state is JOB_STATE_FAILED or JOB_STATE_CANCELLED.

§satisfies_pzs: bool

Output only. Reserved for future use.

§satisfies_pzi: bool

Output only. Reserved for future use.

Implementations§

Source§

impl ModelDeploymentMonitoringJob

Source

pub fn new() -> Self

Source

pub fn set_name<T: Into<String>>(self, v: T) -> Self

Sets the value of name.

§Example
let x = ModelDeploymentMonitoringJob::new().set_name("example");
Source

pub fn set_display_name<T: Into<String>>(self, v: T) -> Self

Sets the value of display_name.

§Example
let x = ModelDeploymentMonitoringJob::new().set_display_name("example");
Source

pub fn set_endpoint<T: Into<String>>(self, v: T) -> Self

Sets the value of endpoint.

§Example
let x = ModelDeploymentMonitoringJob::new().set_endpoint("example");
Source

pub fn set_state<T: Into<JobState>>(self, v: T) -> Self

Sets the value of state.

§Example
use google_cloud_aiplatform_v1::model::JobState;
let x0 = ModelDeploymentMonitoringJob::new().set_state(JobState::Queued);
let x1 = ModelDeploymentMonitoringJob::new().set_state(JobState::Pending);
let x2 = ModelDeploymentMonitoringJob::new().set_state(JobState::Running);
Source

pub fn set_schedule_state<T: Into<MonitoringScheduleState>>(self, v: T) -> Self

Sets the value of schedule_state.

§Example
use google_cloud_aiplatform_v1::model::model_deployment_monitoring_job::MonitoringScheduleState;
let x0 = ModelDeploymentMonitoringJob::new().set_schedule_state(MonitoringScheduleState::Pending);
let x1 = ModelDeploymentMonitoringJob::new().set_schedule_state(MonitoringScheduleState::Offline);
let x2 = ModelDeploymentMonitoringJob::new().set_schedule_state(MonitoringScheduleState::Running);
Source

pub fn set_latest_monitoring_pipeline_metadata<T>(self, v: T) -> Self

Sets the value of latest_monitoring_pipeline_metadata.

§Example
use google_cloud_aiplatform_v1::model::model_deployment_monitoring_job::LatestMonitoringPipelineMetadata;
let x = ModelDeploymentMonitoringJob::new().set_latest_monitoring_pipeline_metadata(LatestMonitoringPipelineMetadata::default()/* use setters */);
Source

pub fn set_or_clear_latest_monitoring_pipeline_metadata<T>( self, v: Option<T>, ) -> Self

Sets or clears the value of latest_monitoring_pipeline_metadata.

§Example
use google_cloud_aiplatform_v1::model::model_deployment_monitoring_job::LatestMonitoringPipelineMetadata;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_latest_monitoring_pipeline_metadata(Some(LatestMonitoringPipelineMetadata::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_latest_monitoring_pipeline_metadata(None::<LatestMonitoringPipelineMetadata>);
Source

pub fn set_model_deployment_monitoring_objective_configs<T, V>( self, v: T, ) -> Self

Sets the value of model_deployment_monitoring_objective_configs.

§Example
use google_cloud_aiplatform_v1::model::ModelDeploymentMonitoringObjectiveConfig;
let x = ModelDeploymentMonitoringJob::new()
    .set_model_deployment_monitoring_objective_configs([
        ModelDeploymentMonitoringObjectiveConfig::default()/* use setters */,
        ModelDeploymentMonitoringObjectiveConfig::default()/* use (different) setters */,
    ]);
Source

pub fn set_model_deployment_monitoring_schedule_config<T>(self, v: T) -> Self

Sets the value of model_deployment_monitoring_schedule_config.

§Example
use google_cloud_aiplatform_v1::model::ModelDeploymentMonitoringScheduleConfig;
let x = ModelDeploymentMonitoringJob::new().set_model_deployment_monitoring_schedule_config(ModelDeploymentMonitoringScheduleConfig::default()/* use setters */);
Source

pub fn set_or_clear_model_deployment_monitoring_schedule_config<T>( self, v: Option<T>, ) -> Self

Sets or clears the value of model_deployment_monitoring_schedule_config.

§Example
use google_cloud_aiplatform_v1::model::ModelDeploymentMonitoringScheduleConfig;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_model_deployment_monitoring_schedule_config(Some(ModelDeploymentMonitoringScheduleConfig::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_model_deployment_monitoring_schedule_config(None::<ModelDeploymentMonitoringScheduleConfig>);
Source

pub fn set_logging_sampling_strategy<T>(self, v: T) -> Self

Sets the value of logging_sampling_strategy.

§Example
use google_cloud_aiplatform_v1::model::SamplingStrategy;
let x = ModelDeploymentMonitoringJob::new().set_logging_sampling_strategy(SamplingStrategy::default()/* use setters */);
Source

pub fn set_or_clear_logging_sampling_strategy<T>(self, v: Option<T>) -> Self

Sets or clears the value of logging_sampling_strategy.

§Example
use google_cloud_aiplatform_v1::model::SamplingStrategy;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_logging_sampling_strategy(Some(SamplingStrategy::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_logging_sampling_strategy(None::<SamplingStrategy>);
Source

pub fn set_model_monitoring_alert_config<T>(self, v: T) -> Self

Sets the value of model_monitoring_alert_config.

§Example
use google_cloud_aiplatform_v1::model::ModelMonitoringAlertConfig;
let x = ModelDeploymentMonitoringJob::new().set_model_monitoring_alert_config(ModelMonitoringAlertConfig::default()/* use setters */);
Source

pub fn set_or_clear_model_monitoring_alert_config<T>(self, v: Option<T>) -> Self

Sets or clears the value of model_monitoring_alert_config.

§Example
use google_cloud_aiplatform_v1::model::ModelMonitoringAlertConfig;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_model_monitoring_alert_config(Some(ModelMonitoringAlertConfig::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_model_monitoring_alert_config(None::<ModelMonitoringAlertConfig>);
Source

pub fn set_predict_instance_schema_uri<T: Into<String>>(self, v: T) -> Self

Sets the value of predict_instance_schema_uri.

§Example
let x = ModelDeploymentMonitoringJob::new().set_predict_instance_schema_uri("example");
Source

pub fn set_sample_predict_instance<T>(self, v: T) -> Self
where T: Into<Value>,

Sets the value of sample_predict_instance.

§Example
use wkt::Value;
let x = ModelDeploymentMonitoringJob::new().set_sample_predict_instance(Value::default()/* use setters */);
Source

pub fn set_or_clear_sample_predict_instance<T>(self, v: Option<T>) -> Self
where T: Into<Value>,

Sets or clears the value of sample_predict_instance.

§Example
use wkt::Value;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_sample_predict_instance(Some(Value::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_sample_predict_instance(None::<Value>);
Source

pub fn set_analysis_instance_schema_uri<T: Into<String>>(self, v: T) -> Self

Sets the value of analysis_instance_schema_uri.

§Example
let x = ModelDeploymentMonitoringJob::new().set_analysis_instance_schema_uri("example");
Source

pub fn set_bigquery_tables<T, V>(self, v: T) -> Self

Sets the value of bigquery_tables.

§Example
use google_cloud_aiplatform_v1::model::ModelDeploymentMonitoringBigQueryTable;
let x = ModelDeploymentMonitoringJob::new()
    .set_bigquery_tables([
        ModelDeploymentMonitoringBigQueryTable::default()/* use setters */,
        ModelDeploymentMonitoringBigQueryTable::default()/* use (different) setters */,
    ]);
Source

pub fn set_log_ttl<T>(self, v: T) -> Self
where T: Into<Duration>,

Sets the value of log_ttl.

§Example
use wkt::Duration;
let x = ModelDeploymentMonitoringJob::new().set_log_ttl(Duration::default()/* use setters */);
Source

pub fn set_or_clear_log_ttl<T>(self, v: Option<T>) -> Self
where T: Into<Duration>,

Sets or clears the value of log_ttl.

§Example
use wkt::Duration;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_log_ttl(Some(Duration::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_log_ttl(None::<Duration>);
Source

pub fn set_labels<T, K, V>(self, v: T) -> Self
where T: IntoIterator<Item = (K, V)>, K: Into<String>, V: Into<String>,

Sets the value of labels.

§Example
let x = ModelDeploymentMonitoringJob::new().set_labels([
    ("key0", "abc"),
    ("key1", "xyz"),
]);
Source

pub fn set_create_time<T>(self, v: T) -> Self
where T: Into<Timestamp>,

Sets the value of create_time.

§Example
use wkt::Timestamp;
let x = ModelDeploymentMonitoringJob::new().set_create_time(Timestamp::default()/* use setters */);
Source

pub fn set_or_clear_create_time<T>(self, v: Option<T>) -> Self
where T: Into<Timestamp>,

Sets or clears the value of create_time.

§Example
use wkt::Timestamp;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_create_time(Some(Timestamp::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_create_time(None::<Timestamp>);
Source

pub fn set_update_time<T>(self, v: T) -> Self
where T: Into<Timestamp>,

Sets the value of update_time.

§Example
use wkt::Timestamp;
let x = ModelDeploymentMonitoringJob::new().set_update_time(Timestamp::default()/* use setters */);
Source

pub fn set_or_clear_update_time<T>(self, v: Option<T>) -> Self
where T: Into<Timestamp>,

Sets or clears the value of update_time.

§Example
use wkt::Timestamp;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_update_time(Some(Timestamp::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_update_time(None::<Timestamp>);
Source

pub fn set_next_schedule_time<T>(self, v: T) -> Self
where T: Into<Timestamp>,

Sets the value of next_schedule_time.

§Example
use wkt::Timestamp;
let x = ModelDeploymentMonitoringJob::new().set_next_schedule_time(Timestamp::default()/* use setters */);
Source

pub fn set_or_clear_next_schedule_time<T>(self, v: Option<T>) -> Self
where T: Into<Timestamp>,

Sets or clears the value of next_schedule_time.

§Example
use wkt::Timestamp;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_next_schedule_time(Some(Timestamp::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_next_schedule_time(None::<Timestamp>);
Source

pub fn set_stats_anomalies_base_directory<T>(self, v: T) -> Self
where T: Into<GcsDestination>,

Sets the value of stats_anomalies_base_directory.

§Example
use google_cloud_aiplatform_v1::model::GcsDestination;
let x = ModelDeploymentMonitoringJob::new().set_stats_anomalies_base_directory(GcsDestination::default()/* use setters */);
Source

pub fn set_or_clear_stats_anomalies_base_directory<T>( self, v: Option<T>, ) -> Self
where T: Into<GcsDestination>,

Sets or clears the value of stats_anomalies_base_directory.

§Example
use google_cloud_aiplatform_v1::model::GcsDestination;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_stats_anomalies_base_directory(Some(GcsDestination::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_stats_anomalies_base_directory(None::<GcsDestination>);
Source

pub fn set_encryption_spec<T>(self, v: T) -> Self
where T: Into<EncryptionSpec>,

Sets the value of encryption_spec.

§Example
use google_cloud_aiplatform_v1::model::EncryptionSpec;
let x = ModelDeploymentMonitoringJob::new().set_encryption_spec(EncryptionSpec::default()/* use setters */);
Source

pub fn set_or_clear_encryption_spec<T>(self, v: Option<T>) -> Self
where T: Into<EncryptionSpec>,

Sets or clears the value of encryption_spec.

§Example
use google_cloud_aiplatform_v1::model::EncryptionSpec;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_encryption_spec(Some(EncryptionSpec::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_encryption_spec(None::<EncryptionSpec>);
Source

pub fn set_enable_monitoring_pipeline_logs<T: Into<bool>>(self, v: T) -> Self

Sets the value of enable_monitoring_pipeline_logs.

§Example
let x = ModelDeploymentMonitoringJob::new().set_enable_monitoring_pipeline_logs(true);
Source

pub fn set_error<T>(self, v: T) -> Self
where T: Into<Status>,

Sets the value of error.

§Example
use rpc::model::Status;
let x = ModelDeploymentMonitoringJob::new().set_error(Status::default()/* use setters */);
Source

pub fn set_or_clear_error<T>(self, v: Option<T>) -> Self
where T: Into<Status>,

Sets or clears the value of error.

§Example
use rpc::model::Status;
let x = ModelDeploymentMonitoringJob::new().set_or_clear_error(Some(Status::default()/* use setters */));
let x = ModelDeploymentMonitoringJob::new().set_or_clear_error(None::<Status>);
Source

pub fn set_satisfies_pzs<T: Into<bool>>(self, v: T) -> Self

Sets the value of satisfies_pzs.

§Example
let x = ModelDeploymentMonitoringJob::new().set_satisfies_pzs(true);
Source

pub fn set_satisfies_pzi<T: Into<bool>>(self, v: T) -> Self

Sets the value of satisfies_pzi.

§Example
let x = ModelDeploymentMonitoringJob::new().set_satisfies_pzi(true);

Trait Implementations§

Source§

impl Clone for ModelDeploymentMonitoringJob

Source§

fn clone(&self) -> ModelDeploymentMonitoringJob

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for ModelDeploymentMonitoringJob

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for ModelDeploymentMonitoringJob

Source§

fn default() -> ModelDeploymentMonitoringJob

Returns the “default value” for a type. Read more
Source§

impl Message for ModelDeploymentMonitoringJob

Source§

fn typename() -> &'static str

The typename of this message.
Source§

impl PartialEq for ModelDeploymentMonitoringJob

Source§

fn eq(&self, other: &ModelDeploymentMonitoringJob) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for ModelDeploymentMonitoringJob

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> PolicyExt for T
where T: ?Sized,

Source§

fn and<P, B, E>(self, other: P) -> And<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow only if self and other return Action::Follow. Read more
Source§

fn or<P, B, E>(self, other: P) -> Or<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow if either self or other returns Action::Follow. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,