pub struct AggregateClassificationMetrics {
pub accuracy: Option<f64>,
pub f1_score: Option<f64>,
pub log_loss: Option<f64>,
pub precision: Option<f64>,
pub recall: Option<f64>,
pub roc_auc: Option<f64>,
pub threshold: Option<f64>,
}
Expand description
Aggregate metrics for classification/classifier models. For multi-class models, the metrics are either macro-averaged or micro-averaged. When macro-averaged, the metrics are calculated for each label and then an unweighted average is taken of those values. When micro-averaged, the metric is calculated globally by counting the total number of correctly predicted rows.
This type is not used in any activity, and only used as part of another schema.
Fields§
§accuracy: Option<f64>
Accuracy is the fraction of predictions given the correct label. For multiclass this is a micro-averaged metric.
f1_score: Option<f64>
The F1 score is an average of recall and precision. For multiclass this is a macro-averaged metric.
log_loss: Option<f64>
Logarithmic Loss. For multiclass this is a macro-averaged metric.
precision: Option<f64>
Precision is the fraction of actual positive predictions that had positive actual labels. For multiclass this is a macro-averaged metric treating each class as a binary classifier.
recall: Option<f64>
Recall is the fraction of actual positive labels that were given a positive prediction. For multiclass this is a macro-averaged metric.
roc_auc: Option<f64>
Area Under a ROC Curve. For multiclass this is a macro-averaged metric.
threshold: Option<f64>
Threshold at which the metrics are computed. For binary classification models this is the positive class threshold. For multi-class classfication models this is the confidence threshold.
Trait Implementations§
Source§impl Clone for AggregateClassificationMetrics
impl Clone for AggregateClassificationMetrics
Source§fn clone(&self) -> AggregateClassificationMetrics
fn clone(&self) -> AggregateClassificationMetrics
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Default for AggregateClassificationMetrics
impl Default for AggregateClassificationMetrics
Source§fn default() -> AggregateClassificationMetrics
fn default() -> AggregateClassificationMetrics
Source§impl<'de> Deserialize<'de> for AggregateClassificationMetrics
impl<'de> Deserialize<'de> for AggregateClassificationMetrics
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
impl Part for AggregateClassificationMetrics
Auto Trait Implementations§
impl Freeze for AggregateClassificationMetrics
impl RefUnwindSafe for AggregateClassificationMetrics
impl Send for AggregateClassificationMetrics
impl Sync for AggregateClassificationMetrics
impl Unpin for AggregateClassificationMetrics
impl UnwindSafe for AggregateClassificationMetrics
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more