pub struct HparamSearchSpaces {Show 22 fields
pub activation_fn: Option<StringHparamSearchSpace>,
pub batch_size: Option<IntHparamSearchSpace>,
pub booster_type: Option<StringHparamSearchSpace>,
pub colsample_bylevel: Option<DoubleHparamSearchSpace>,
pub colsample_bynode: Option<DoubleHparamSearchSpace>,
pub colsample_bytree: Option<DoubleHparamSearchSpace>,
pub dart_normalize_type: Option<StringHparamSearchSpace>,
pub dropout: Option<DoubleHparamSearchSpace>,
pub hidden_units: Option<IntArrayHparamSearchSpace>,
pub l1_reg: Option<DoubleHparamSearchSpace>,
pub l2_reg: Option<DoubleHparamSearchSpace>,
pub learn_rate: Option<DoubleHparamSearchSpace>,
pub max_tree_depth: Option<IntHparamSearchSpace>,
pub min_split_loss: Option<DoubleHparamSearchSpace>,
pub min_tree_child_weight: Option<IntHparamSearchSpace>,
pub num_clusters: Option<IntHparamSearchSpace>,
pub num_factors: Option<IntHparamSearchSpace>,
pub num_parallel_tree: Option<IntHparamSearchSpace>,
pub optimizer: Option<StringHparamSearchSpace>,
pub subsample: Option<DoubleHparamSearchSpace>,
pub tree_method: Option<StringHparamSearchSpace>,
pub wals_alpha: Option<DoubleHparamSearchSpace>,
}Expand description
Hyperparameter search spaces. These should be a subset of training_options.
This type is not used in any activity, and only used as part of another schema.
Fields§
§activation_fn: Option<StringHparamSearchSpace>Activation functions of neural network models.
batch_size: Option<IntHparamSearchSpace>Mini batch sample size.
booster_type: Option<StringHparamSearchSpace>Booster type for boosted tree models.
colsample_bylevel: Option<DoubleHparamSearchSpace>Subsample ratio of columns for each level for boosted tree models.
colsample_bynode: Option<DoubleHparamSearchSpace>Subsample ratio of columns for each node(split) for boosted tree models.
colsample_bytree: Option<DoubleHparamSearchSpace>Subsample ratio of columns when constructing each tree for boosted tree models.
dart_normalize_type: Option<StringHparamSearchSpace>Dart normalization type for boosted tree models.
dropout: Option<DoubleHparamSearchSpace>Dropout probability for dnn model training and boosted tree models using dart booster.
Hidden units for neural network models.
l1_reg: Option<DoubleHparamSearchSpace>L1 regularization coefficient.
l2_reg: Option<DoubleHparamSearchSpace>L2 regularization coefficient.
learn_rate: Option<DoubleHparamSearchSpace>Learning rate of training jobs.
max_tree_depth: Option<IntHparamSearchSpace>Maximum depth of a tree for boosted tree models.
min_split_loss: Option<DoubleHparamSearchSpace>Minimum split loss for boosted tree models.
min_tree_child_weight: Option<IntHparamSearchSpace>Minimum sum of instance weight needed in a child for boosted tree models.
num_clusters: Option<IntHparamSearchSpace>Number of clusters for k-means.
num_factors: Option<IntHparamSearchSpace>Number of latent factors to train on.
num_parallel_tree: Option<IntHparamSearchSpace>Number of parallel trees for boosted tree models.
optimizer: Option<StringHparamSearchSpace>Optimizer of TF models.
subsample: Option<DoubleHparamSearchSpace>Subsample the training data to grow tree to prevent overfitting for boosted tree models.
tree_method: Option<StringHparamSearchSpace>Tree construction algorithm for boosted tree models.
wals_alpha: Option<DoubleHparamSearchSpace>Hyperparameter for matrix factoration when implicit feedback type is specified.
Trait Implementations§
Source§impl Clone for HparamSearchSpaces
impl Clone for HparamSearchSpaces
Source§fn clone(&self) -> HparamSearchSpaces
fn clone(&self) -> HparamSearchSpaces
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read more