Struct GoogleCloudAiplatformV1ModelContainerSpec

Source
pub struct GoogleCloudAiplatformV1ModelContainerSpec {
    pub health_route: Option<String>,
    pub shared_memory_size_mb: Option<i64>,
    pub env: Option<Vec<GoogleCloudAiplatformV1EnvVar>>,
    pub image_uri: Option<String>,
    pub deployment_timeout: Option<Duration>,
    pub startup_probe: Option<GoogleCloudAiplatformV1Probe>,
    pub predict_route: Option<String>,
    pub command: Option<Vec<String>>,
    pub grpc_ports: Option<Vec<GoogleCloudAiplatformV1Port>>,
    pub ports: Option<Vec<GoogleCloudAiplatformV1Port>>,
    pub health_probe: Option<GoogleCloudAiplatformV1Probe>,
    pub args: Option<Vec<String>>,
}
Expand description

Specification of a container for serving predictions. Some fields in this message correspond to fields in the Kubernetes Container v1 core specification.

This type is not used in any activity, and only used as part of another schema.

Fields§

§health_route: Option<String>

Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container’s IP address and port to check that the container is healthy. Read more about health checks. For example, if you set this field to /bar, then Vertex AI intermittently sends a GET request to the /bar path on the port of your container specified by the first value of this ModelContainerSpec’s ports field. If you don’t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following endpoints/)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the AIP_ENDPOINT_ID environment variable.) * DEPLOYED_MODEL: DeployedModel.id of the DeployedModel. (Vertex AI makes this value available to your container code as the AIP_DEPLOYED_MODEL_ID environment variable.)

§shared_memory_size_mb: Option<i64>

Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.

§env: Option<Vec<GoogleCloudAiplatformV1EnvVar>>

Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable VAR_2 to have the value foo bar: json [ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ] If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the env field of the Kubernetes Containers v1 core API.

§image_uri: Option<String>

Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the container publishing requirements, including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see Custom container requirements. You can use the URI to one of Vertex AI’s pre-built container images for prediction in this field.

§deployment_timeout: Option<Duration>

Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.

§startup_probe: Option<GoogleCloudAiplatformV1Probe>

Immutable. Specification for Kubernetes startup probe.

§predict_route: Option<String>

Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container’s IP address and port. Vertex AI then returns the container’s response in the API response. For example, if you set this field to /foo, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the /foo path on the port of your container specified by the first value of this ModelContainerSpec’s ports field. If you don’t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following endpoints/)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the AIP_ENDPOINT_ID environment variable.) * DEPLOYED_MODEL: DeployedModel.id of the DeployedModel. (Vertex AI makes this value available to your container code as the AIP_DEPLOYED_MODEL_ID environment variable.)

§command: Option<Vec<String>>

Immutable. Specifies the command that runs when the container starts. This overrides the container’s ENTRYPOINT. Specify this field as an array of executable and arguments, similar to a Docker ENTRYPOINT’s “exec” form, not its “shell” form. If you do not specify this field, then the container’s ENTRYPOINT runs, in conjunction with the args field or the container’s CMD, if either exists. If this field is not specified and the container does not have an ENTRYPOINT, then refer to the Docker documentation about how CMD and ENTRYPOINT interact. If you specify this field, then you can also specify the args field to provide additional arguments for this command. However, if you specify this field, then the container’s CMD is ignored. See the Kubernetes documentation about how the command and args fields interact with a container’s ENTRYPOINT and CMD. In this field, you can reference environment variables set by Vertex AI and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with $$; for example: $$(VARIABLE_NAME) This field corresponds to the command field of the Kubernetes Containers v1 core API.

§grpc_ports: Option<Vec<GoogleCloudAiplatformV1Port>>

Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the ports field of the Kubernetes Containers v1 core API.

§ports: Option<Vec<GoogleCloudAiplatformV1Port>>

Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, it defaults to following value: json [ { "containerPort": 8080 } ] Vertex AI does not use ports other than the first one listed. This field corresponds to the ports field of the Kubernetes Containers v1 core API.

§health_probe: Option<GoogleCloudAiplatformV1Probe>

Immutable. Specification for Kubernetes readiness probe.

§args: Option<Vec<String>>

Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container’s CMD. Specify this field as an array of executable and arguments, similar to a Docker CMD’s “default parameters” form. If you don’t specify this field but do specify the command field, then the command from the command field runs without any additional arguments. See the Kubernetes documentation about how the command and args fields interact with a container’s ENTRYPOINT and CMD. If you don’t specify this field and don’t specify the command field, then the container’s ENTRYPOINT and CMD determine what runs based on their default behavior. See the Docker documentation about how CMD and ENTRYPOINT interact. In this field, you can reference environment variables set by Vertex AI and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with $$; for example: $$(VARIABLE_NAME) This field corresponds to the args field of the Kubernetes Containers v1 core API.

Trait Implementations§

Source§

impl Clone for GoogleCloudAiplatformV1ModelContainerSpec

Source§

fn clone(&self) -> GoogleCloudAiplatformV1ModelContainerSpec

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for GoogleCloudAiplatformV1ModelContainerSpec

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for GoogleCloudAiplatformV1ModelContainerSpec

Source§

fn default() -> GoogleCloudAiplatformV1ModelContainerSpec

Returns the “default value” for a type. Read more
Source§

impl<'de> Deserialize<'de> for GoogleCloudAiplatformV1ModelContainerSpec

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Serialize for GoogleCloudAiplatformV1ModelContainerSpec

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl Part for GoogleCloudAiplatformV1ModelContainerSpec

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

Source§

impl<T> ErasedDestructor for T
where T: 'static,