pub struct GoogleCloudAiplatformV1ExplanationParameters {
pub top_k: Option<i32>,
pub examples: Option<GoogleCloudAiplatformV1Examples>,
pub integrated_gradients_attribution: Option<GoogleCloudAiplatformV1IntegratedGradientsAttribution>,
pub sampled_shapley_attribution: Option<GoogleCloudAiplatformV1SampledShapleyAttribution>,
pub xrai_attribution: Option<GoogleCloudAiplatformV1XraiAttribution>,
pub output_indices: Option<Vec<Value>>,
}Expand description
Parameters to configure explaining for Model’s predictions.
This type is not used in any activity, and only used as part of another schema.
Fields§
§top_k: Option<i32>If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
examples: Option<GoogleCloudAiplatformV1Examples>Example-based explanations that returns the nearest neighbors from the provided dataset.
integrated_gradients_attribution: Option<GoogleCloudAiplatformV1IntegratedGradientsAttribution>An attribution method that computes Aumann-Shapley values taking advantage of the model’s fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
sampled_shapley_attribution: Option<GoogleCloudAiplatformV1SampledShapleyAttribution>An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
xrai_attribution: Option<GoogleCloudAiplatformV1XraiAttribution>An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model’s fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
output_indices: Option<Vec<Value>>If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it’s explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
Trait Implementations§
Source§impl Clone for GoogleCloudAiplatformV1ExplanationParameters
impl Clone for GoogleCloudAiplatformV1ExplanationParameters
Source§fn clone(&self) -> GoogleCloudAiplatformV1ExplanationParameters
fn clone(&self) -> GoogleCloudAiplatformV1ExplanationParameters
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Default for GoogleCloudAiplatformV1ExplanationParameters
impl Default for GoogleCloudAiplatformV1ExplanationParameters
Source§fn default() -> GoogleCloudAiplatformV1ExplanationParameters
fn default() -> GoogleCloudAiplatformV1ExplanationParameters
Source§impl<'de> Deserialize<'de> for GoogleCloudAiplatformV1ExplanationParameters
impl<'de> Deserialize<'de> for GoogleCloudAiplatformV1ExplanationParameters
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
impl Part for GoogleCloudAiplatformV1ExplanationParameters
Auto Trait Implementations§
impl Freeze for GoogleCloudAiplatformV1ExplanationParameters
impl RefUnwindSafe for GoogleCloudAiplatformV1ExplanationParameters
impl Send for GoogleCloudAiplatformV1ExplanationParameters
impl Sync for GoogleCloudAiplatformV1ExplanationParameters
impl Unpin for GoogleCloudAiplatformV1ExplanationParameters
impl UnwindSafe for GoogleCloudAiplatformV1ExplanationParameters
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more