pub struct GoogleCloudAiplatformV1ExplanationMetadataInputMetadata {
pub feature_value_domain: Option<GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain>,
pub input_tensor_name: Option<String>,
pub dense_shape_tensor_name: Option<String>,
pub encoding: Option<String>,
pub modality: Option<String>,
pub input_baselines: Option<Vec<Value>>,
pub encoded_baselines: Option<Vec<Value>>,
pub group_name: Option<String>,
pub index_feature_mapping: Option<Vec<String>>,
pub visualization: Option<GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization>,
pub encoded_tensor_name: Option<String>,
pub indices_tensor_name: Option<String>,
}Expand description
Metadata of the input of a feature. Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
This type is not used in any activity, and only used as part of another schema.
Fields§
§feature_value_domain: Option<GoogleCloudAiplatformV1ExplanationMetadataInputMetadataFeatureValueDomain>The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
input_tensor_name: Option<String>Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
dense_shape_tensor_name: Option<String>Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
encoding: Option<String>Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
modality: Option<String>Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
input_baselines: Option<Vec<Value>>Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature’s input in the instance[]. The schema of any single instance may be specified via Endpoint’s DeployedModels’ Model’s PredictSchemata’s instance_schema_uri.
encoded_baselines: Option<Vec<Value>>A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
group_name: Option<String>Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
index_feature_mapping: Option<Vec<String>>A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
visualization: Option<GoogleCloudAiplatformV1ExplanationMetadataInputMetadataVisualization>Visualization configurations for image explanation.
encoded_tensor_name: Option<String>Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
indices_tensor_name: Option<String>Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
Trait Implementations§
Source§impl Clone for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
impl Clone for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Source§fn clone(&self) -> GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
fn clone(&self) -> GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Default for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
impl Default for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Source§fn default() -> GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
fn default() -> GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Source§impl<'de> Deserialize<'de> for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
impl<'de> Deserialize<'de> for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
impl Part for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Auto Trait Implementations§
impl Freeze for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
impl RefUnwindSafe for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
impl Send for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
impl Sync for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
impl Unpin for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
impl UnwindSafe for GoogleCloudAiplatformV1ExplanationMetadataInputMetadata
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more