pub struct SolverBuilder<'a, R: Problem, A>(/* private fields */);
Expand description
Builder for the SolverDriver
.
Implementations§
Source§impl<'a, R: Problem, A> SolverBuilder<'a, R, A>
impl<'a, R: Problem, A> SolverBuilder<'a, R, A>
Sourcepub fn with_initial(self, x0: Vec<R::Field>) -> Self
pub fn with_initial(self, x0: Vec<R::Field>) -> Self
Sets the initial point from which the iterative process starts.
Examples found in repository?
examples/equations.rs (line 36)
33fn main() -> Result<(), String> {
34 let r = Rosenbrock { a: 1.0, b: 1.0 };
35 let mut solver = SolverDriver::builder(&r)
36 .with_initial(vec![10.0, -5.0])
37 .build();
38
39 let tolerance = 1e-6;
40
41 let (_, norm) = solver
42 .find(|state| {
43 println!(
44 "iter = {}\t|| r(x) || = {}\tx = {:?}",
45 state.iter(),
46 state.norm(),
47 state.x()
48 );
49 state.norm() <= tolerance || state.iter() >= 100
50 })
51 .map_err(|error| format!("{error}"))?;
52
53 if norm <= tolerance {
54 Ok(())
55 } else {
56 Err("did not converge".to_string())
57 }
58}
Sourcepub fn with_algo<S2, FA>(self, factory: FA) -> SolverBuilder<'a, R, S2>
pub fn with_algo<S2, FA>(self, factory: FA) -> SolverBuilder<'a, R, S2>
Sets specific algorithm to be used.
This builder method accepts a closure that takes the reference to the
problem and its domain. For many algorithms in gomez, you can simply
pass the new
constructor directly (e.g., TrustRegion::new
).
Sourcepub fn build(self) -> SolverDriver<'a, R, A>
pub fn build(self) -> SolverDriver<'a, R, A>
Builds the SolverDriver
.
Examples found in repository?
examples/equations.rs (line 37)
33fn main() -> Result<(), String> {
34 let r = Rosenbrock { a: 1.0, b: 1.0 };
35 let mut solver = SolverDriver::builder(&r)
36 .with_initial(vec![10.0, -5.0])
37 .build();
38
39 let tolerance = 1e-6;
40
41 let (_, norm) = solver
42 .find(|state| {
43 println!(
44 "iter = {}\t|| r(x) || = {}\tx = {:?}",
45 state.iter(),
46 state.norm(),
47 state.x()
48 );
49 state.norm() <= tolerance || state.iter() >= 100
50 })
51 .map_err(|error| format!("{error}"))?;
52
53 if norm <= tolerance {
54 Ok(())
55 } else {
56 Err("did not converge".to_string())
57 }
58}
Auto Trait Implementations§
impl<'a, R, A> Freeze for SolverBuilder<'a, R, A>where
A: Freeze,
impl<'a, R, A> RefUnwindSafe for SolverBuilder<'a, R, A>
impl<'a, R, A> Send for SolverBuilder<'a, R, A>
impl<'a, R, A> Sync for SolverBuilder<'a, R, A>
impl<'a, R, A> Unpin for SolverBuilder<'a, R, A>
impl<'a, R, A> UnwindSafe for SolverBuilder<'a, R, A>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.