#[repr(C)]pub struct Vec4<T> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
Fields§
§x: T
§y: T
§z: T
§w: T
Implementations§
Source§impl<T> Vec4<T>
impl<T> Vec4<T>
pub fn new(x: T, y: T, z: T, w: T) -> Self
pub fn as_ptr(&self) -> *const T
pub fn as_mut_ptr(&mut self) -> *mut T
Sourcepub fn as_slice(&self) -> &[T]
pub fn as_slice(&self) -> &[T]
use gfxmath_vec4::Vec4;
let a = Vec4::<f32>::new(1.0, 2.0, 3.0, 4.0);
let a_slice = a.as_slice();
assert_eq!(1.0, a_slice[0]);
assert_eq!(2.0, a_slice[1]);
assert_eq!(3.0, a_slice[2]);
assert_eq!(4.0, a_slice[3]);
Sourcepub fn as_mut_slice(&mut self) -> &mut [T]
pub fn as_mut_slice(&mut self) -> &mut [T]
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(1.0, 2.0, 3.0, 4.0);
{
let a_slice = a.as_mut_slice();
assert_eq!(1.0, a_slice[0]);
assert_eq!(2.0, a_slice[1]);
assert_eq!(3.0, a_slice[2]);
assert_eq!(4.0, a_slice[3]);
a_slice[2] = 108.0;
assert_eq!(108.0, a_slice[2]);
}
a.x = 4.5;
assert_eq!(4.5, a.x);
let a_slice = a.as_mut_slice();
assert_eq!(4.5, a_slice[0]);
assert_eq!(2.0, a_slice[1]);
assert_eq!(108.0, a_slice[2]);
assert_eq!(4.0, a_slice[3]);
Trait Implementations§
Source§impl<T> Add<T> for Vec4<T>
impl<T> Add<T> for Vec4<T>
Source§impl Add<Vec4<f32>> for f32
impl Add<Vec4<f32>> for f32
Source§impl Add<Vec4<f64>> for f64
impl Add<Vec4<f64>> for f64
Source§impl<T> Add for Vec4<T>
impl<T> Add for Vec4<T>
Source§fn add(self, rhs: Vec4<T>) -> Self::Output
fn add(self, rhs: Vec4<T>) -> Self::Output
use gfxmath_vec4 ::Vec4;
let a = Vec4::new(1.0, 2.0, 3.0, 4.0);
let b = Vec4::new(3.0, 4.0, 5.0, 6.0);
let res: Vec4<f32> = &a + &b;
assert_eq!(1.0, a.x);
assert_eq!(2.0, a.y);
assert_eq!(3.0, a.z);
assert_eq!(4.0, a.w);
assert_eq!(3.0, b.x);
assert_eq!(4.0, b.y);
assert_eq!(5.0, b.z);
assert_eq!(6.0, b.w);
assert_eq!(4.0, res.x);
assert_eq!(6.0, res.y);
assert_eq!(8.0, res.z);
assert_eq!(10.0, res.w);
Source§impl<T> AddAssign<&Vec4<T>> for Vec4<T>
impl<T> AddAssign<&Vec4<T>> for Vec4<T>
Source§fn add_assign(&mut self, rhs: &Vec4<T>)
fn add_assign(&mut self, rhs: &Vec4<T>)
Performs the
+=
operation. Read moreSource§impl<T> AddAssign<T> for Vec4<T>
impl<T> AddAssign<T> for Vec4<T>
Source§fn add_assign(&mut self, rhs: T)
fn add_assign(&mut self, rhs: T)
use gfxmath_vec4::Vec4;
let mut a = Vec4::new(1.0, 2.0, 3.0, 8.0);
a += 4.0;
assert_eq!(5.0, a.x);
assert_eq!(6.0, a.y);
assert_eq!(7.0, a.z);
assert_eq!(12.0, a.w);
Source§impl<T> AddAssign for Vec4<T>
impl<T> AddAssign for Vec4<T>
Source§fn add_assign(&mut self, rhs: Vec4<T>)
fn add_assign(&mut self, rhs: Vec4<T>)
use gfxmath_vec4::Vec4;
let mut a = Vec4::new(1.0, 2.0, 3.0, 4.0);
let b = Vec4::all(3.0);
a += b;
assert_eq!(4.0, a.x);
assert_eq!(5.0, a.y);
assert_eq!(6.0, a.z);
assert_eq!(7.0, a.w);
Source§impl Cross for Vec4<f32>
impl Cross for Vec4<f32>
Source§fn cross(self, rhs: Vec4<f32>) -> Self::Output
fn cross(self, rhs: Vec4<f32>) -> Self::Output
use gfxmath_vec4::ops::Cross;
use gfxmath_vec4::Vec4;
let a = Vec4::<f32>::new(1.0, 3.0, 2.5, 0.0);
let b = Vec4::all(2.0);
let res = a.cross(b);
assert_eq!(1.0, res.x);
assert_eq!(3.0, res.y);
assert_eq!(-4.0, res.z);
assert_eq!(0.0, res.w);
type Output = Vec4<f32>
Source§impl Cross for Vec4<f64>
impl Cross for Vec4<f64>
Source§fn cross(self, rhs: Vec4<f64>) -> Self::Output
fn cross(self, rhs: Vec4<f64>) -> Self::Output
use gfxmath_vec4::ops::Cross;
use gfxmath_vec4::Vec4;
let a = Vec4::<f64>::new(1.0, 3.0, 2.5, 0.0);
let b = Vec4::all(2.0);
let res = a.cross(b);
assert_eq!(1.0, res.x);
assert_eq!(3.0, res.y);
assert_eq!(-4.0, res.z);
assert_eq!(0.0, res.w);
type Output = Vec4<f64>
Source§impl<T> Div<T> for Vec4<T>
impl<T> Div<T> for Vec4<T>
Source§impl<T> DivAssign<&Vec4<T>> for Vec4<T>
impl<T> DivAssign<&Vec4<T>> for Vec4<T>
Source§fn div_assign(&mut self, rhs: &Vec4<T>)
fn div_assign(&mut self, rhs: &Vec4<T>)
Performs the
/=
operation. Read moreSource§impl<T> DivAssign<T> for Vec4<T>
impl<T> DivAssign<T> for Vec4<T>
Source§fn div_assign(&mut self, rhs: T)
fn div_assign(&mut self, rhs: T)
Scalar division with vector
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(0.5, 2.5, -2.5, 1.0);
a /= 2.0;
assert_eq!( 0.25, a.x);
assert_eq!( 1.25, a.y);
assert_eq!(-1.25, a.z);
assert_eq!( 0.5, a.w);
Source§impl<T> DivAssign for Vec4<T>
impl<T> DivAssign for Vec4<T>
Source§fn div_assign(&mut self, rhs: Vec4<T>)
fn div_assign(&mut self, rhs: Vec4<T>)
Scalar division with vector
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(0.5, 2.5, -2.5, 3.0);
let b = Vec4::<f32>::new(0.5, 2.5, -2.5, 3.0);
a /= b;
assert_eq!(1.0, a.x);
assert_eq!(1.0, a.y);
assert_eq!(1.0, a.z);
assert_eq!(1.0, a.w);
Source§impl<T> Mul<T> for Vec4<T>
impl<T> Mul<T> for Vec4<T>
Source§impl Mul<Vec4<f32>> for f32
impl Mul<Vec4<f32>> for f32
Source§impl Mul<Vec4<f64>> for f64
impl Mul<Vec4<f64>> for f64
Source§impl Mul<Vec4<i32>> for i32
impl Mul<Vec4<i32>> for i32
Source§impl Mul<Vec4<i64>> for i64
impl Mul<Vec4<i64>> for i64
Source§impl<T> Mul for Vec4<T>
impl<T> Mul for Vec4<T>
Source§fn mul(self, rhs: Vec4<T>) -> Self::Output
fn mul(self, rhs: Vec4<T>) -> Self::Output
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(1.5, 2.5, -2.0, 5.0);
let b = Vec4::<f32>::new(4.0, 2.0, 4.0, 5.0);
let c = Vec4::from(&a * &b);
a.x = 2.0;
assert_eq!( 6.0, c.x);
assert_eq!( 5.0, c.y);
assert_eq!(-8.0, c.z);
assert_eq!(25.0, c.w);
let c = Vec4::from(a * b);
assert_eq!( 8.0, c.x);
assert_eq!( 5.0, c.y);
assert_eq!(-8.0, c.z);
assert_eq!(25.0, c.w);
Source§impl<T> MulAssign<&Vec4<T>> for Vec4<T>
impl<T> MulAssign<&Vec4<T>> for Vec4<T>
Source§fn mul_assign(&mut self, rhs: &Vec4<T>)
fn mul_assign(&mut self, rhs: &Vec4<T>)
Performs the
*=
operation. Read moreSource§impl<T> MulAssign<T> for Vec4<T>
impl<T> MulAssign<T> for Vec4<T>
Source§fn mul_assign(&mut self, rhs: T)
fn mul_assign(&mut self, rhs: T)
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(1.5, 2.5, -2.0, 9.0);
a *= 2.0;
assert_eq!( 3.0, a.x);
assert_eq!( 5.0, a.y);
assert_eq!(-4.0, a.z);
assert_eq!(18.0, a.w);
Source§impl<T> MulAssign for Vec4<T>
impl<T> MulAssign for Vec4<T>
Source§fn mul_assign(&mut self, rhs: Vec4<T>)
fn mul_assign(&mut self, rhs: Vec4<T>)
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(1.5, 2.5, -2.0, 3.0);
let b = Vec4::<f32>::new(4.0, 2.0, 4.0, 4.0);
a *= b;
assert_eq!( 6.0, a.x);
assert_eq!( 5.0, a.y);
assert_eq!(-8.0, a.z);
assert_eq!(12.0, a.w);
Source§impl<T> Neg for Vec4<T>
impl<T> Neg for Vec4<T>
Source§impl Norm for Vec4<f32>
impl Norm for Vec4<f32>
Source§fn norm(self) -> Self::Output
fn norm(self) -> Self::Output
use gfxmath_vec4::ops::Norm;
use gfxmath_vec4::Vec4;
let a = Vec4::<f32>::new(3.0, 4.0, 0.0, 0.0);
let an = a.norm().unwrap();
assert_eq!(3.0/5.0, an.x);
assert_eq!(4.0/5.0, an.y);
assert_eq!(0.0, an.z);
assert_eq!(0.0, an.w);
type Output = Option<Vec4<f32>>
Source§impl Norm for Vec4<f64>
impl Norm for Vec4<f64>
Source§fn norm(self) -> Self::Output
fn norm(self) -> Self::Output
use gfxmath_vec4::ops::Norm;
use gfxmath_vec4::Vec4;
let a = Vec4::<f64>::new(3.0, 4.0, 0.0, 0.0);
let an = a.norm().unwrap();
assert_eq!(3.0/5.0, an.x);
assert_eq!(4.0/5.0, an.y);
assert_eq!(0.0, an.z);
assert_eq!(0.0, an.w);
type Output = Option<Vec4<f64>>
Source§impl<T> Sub<T> for Vec4<T>
impl<T> Sub<T> for Vec4<T>
Source§impl Sub<Vec4<f32>> for f32
impl Sub<Vec4<f32>> for f32
Source§impl Sub<Vec4<f64>> for f64
impl Sub<Vec4<f64>> for f64
Source§impl Sub<Vec4<i32>> for i32
impl Sub<Vec4<i32>> for i32
Source§impl Sub<Vec4<i64>> for i64
impl Sub<Vec4<i64>> for i64
Source§impl<T> Sub for Vec4<T>
impl<T> Sub for Vec4<T>
Source§fn sub(self, rhs: Vec4<T>) -> Self::Output
fn sub(self, rhs: Vec4<T>) -> Self::Output
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(0.5, 2.5, -2.5, 3.0);
let b = Vec4::<f32>::new(1.5, 2.5, 2.0, 4.0);
let c = Vec4::from(&a - &b);
a.x = 1.0;
assert_eq!(-1.0, c.x);
assert_eq!( 0.0, c.y);
assert_eq!(-4.5, c.z);
assert_eq!(-1.0, c.w);
let c2 = Vec4::from(a - b);
assert_eq!(-0.5, c2.x);
assert_eq!( 0.0, c2.y);
assert_eq!(-4.5, c2.z);
assert_eq!(-1.0, c2.w);
Source§impl<T> SubAssign<&Vec4<T>> for Vec4<T>
impl<T> SubAssign<&Vec4<T>> for Vec4<T>
Source§fn sub_assign(&mut self, rhs: &Vec4<T>)
fn sub_assign(&mut self, rhs: &Vec4<T>)
Performs the
-=
operation. Read moreSource§impl<T> SubAssign<T> for Vec4<T>
impl<T> SubAssign<T> for Vec4<T>
Source§fn sub_assign(&mut self, rhs: T)
fn sub_assign(&mut self, rhs: T)
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(0.5, 2.5, -2.5, 3.0);
a -= -1.0;
assert_eq!( 1.5, a.x);
assert_eq!( 3.5, a.y);
assert_eq!(-1.5, a.z);
assert_eq!( 4.0, a.w);
Source§impl<T> SubAssign for Vec4<T>
impl<T> SubAssign for Vec4<T>
Source§fn sub_assign(&mut self, rhs: Vec4<T>)
fn sub_assign(&mut self, rhs: Vec4<T>)
use gfxmath_vec4::Vec4;
let mut a = Vec4::<f32>::new(0.5, 2.5, -2.5, 4.0);
let mut b = Vec4::<f32>::new(1.5, 2.5, 2.0, 3.0);
a -= b;
assert_eq!(-1.0, a.x);
assert_eq!( 0.0, a.y);
assert_eq!(-4.5, a.z);
assert_eq!( 1.0, a.w);
impl<T> StructuralPartialEq for Vec4<T>
Auto Trait Implementations§
impl<T> Freeze for Vec4<T>where
T: Freeze,
impl<T> RefUnwindSafe for Vec4<T>where
T: RefUnwindSafe,
impl<T> Send for Vec4<T>where
T: Send,
impl<T> Sync for Vec4<T>where
T: Sync,
impl<T> Unpin for Vec4<T>where
T: Unpin,
impl<T> UnwindSafe for Vec4<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more