Struct geo_types::geometry::LineString
source · pub struct LineString<T: CoordNum = f64>(pub Vec<Coord<T>>);Expand description
An ordered collection of two or more Coords, representing a
path between locations.
Semantics
- A
LineStringis closed if it is empty, or if the first and last coordinates are the same. - The boundary of a
LineStringis either:- empty if it is closed (see 1) or
- contains the start and end coordinates.
- The interior is the (infinite) set of all coordinates along the
LineString, not including the boundary. - A
LineStringis simple if it does not intersect except optionally at the first and last coordinates (in which case it is also closed, see 1). - A simple and closed
LineStringis aLinearRingas defined in the OGC-SFA (but is not defined as a separate type in this crate).
Validity
A LineString is valid if it is either empty or
contains 2 or more coordinates.
Further, a closed LineString must not self-intersect. Note that its
validity is not enforced, and operations and
predicates are undefined on invalid LineStrings.
Examples
Creation
Create a LineString by calling it directly:
use geo_types::{coord, LineString};
let line_string = LineString::new(vec![
coord! { x: 0., y: 0. },
coord! { x: 10., y: 0. },
]);Create a LineString with the line_string! macro:
use geo_types::line_string;
let line_string = line_string![
(x: 0., y: 0.),
(x: 10., y: 0.),
];By converting from a Vec of coordinate-like things:
use geo_types::LineString;
let line_string: LineString<f32> = vec![(0., 0.), (10., 0.)].into();use geo_types::LineString;
let line_string: LineString = vec![[0., 0.], [10., 0.]].into();Or by collecting from a Coord iterator
use geo_types::{coord, LineString};
let mut coords_iter =
vec![coord! { x: 0., y: 0. }, coord! { x: 10., y: 0. }].into_iter();
let line_string: LineString<f32> = coords_iter.collect();Iteration
LineString provides five iterators: coords, coords_mut, points, lines, and triangles:
use geo_types::{coord, LineString};
let line_string = LineString::new(vec![
coord! { x: 0., y: 0. },
coord! { x: 10., y: 0. },
]);
line_string.coords().for_each(|coord| println!("{:?}", coord));
for point in line_string.points() {
println!("Point x = {}, y = {}", point.x(), point.y());
}Note that its IntoIterator impl yields Coords when looping:
use geo_types::{coord, LineString};
let line_string = LineString::new(vec![
coord! { x: 0., y: 0. },
coord! { x: 10., y: 0. },
]);
for coord in &line_string {
println!("Coordinate x = {}, y = {}", coord.x, coord.y);
}
for coord in line_string {
println!("Coordinate x = {}, y = {}", coord.x, coord.y);
}
Decomposition
You can decompose a LineString into a Vec of Coords or Points:
use geo_types::{coord, LineString, Point};
let line_string = LineString::new(vec![
coord! { x: 0., y: 0. },
coord! { x: 10., y: 0. },
]);
let coordinate_vec = line_string.clone().into_inner();
let point_vec = line_string.clone().into_points();
Tuple Fields§
§0: Vec<Coord<T>>Implementations§
source§impl<T: CoordNum> LineString<T>
impl<T: CoordNum> LineString<T>
sourcepub fn points_iter(&self) -> PointsIter<'_, T> ⓘ
👎Deprecated: Use points() instead
pub fn points_iter(&self) -> PointsIter<'_, T> ⓘ
Return an iterator yielding the coordinates of a LineString as Points
sourcepub fn points(&self) -> PointsIter<'_, T> ⓘ
pub fn points(&self) -> PointsIter<'_, T> ⓘ
Return an iterator yielding the coordinates of a LineString as Points
sourcepub fn coords(&self) -> impl DoubleEndedIterator<Item = &Coord<T>>
pub fn coords(&self) -> impl DoubleEndedIterator<Item = &Coord<T>>
Return an iterator yielding the members of a LineString as Coords
sourcepub fn coords_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Coord<T>>
pub fn coords_mut(&mut self) -> impl DoubleEndedIterator<Item = &mut Coord<T>>
Return an iterator yielding the coordinates of a LineString as mutable Coords
sourcepub fn into_points(self) -> Vec<Point<T>> ⓘ
pub fn into_points(self) -> Vec<Point<T>> ⓘ
Return the coordinates of a LineString as a Vec of Points
sourcepub fn into_inner(self) -> Vec<Coord<T>> ⓘ
pub fn into_inner(self) -> Vec<Coord<T>> ⓘ
Return the coordinates of a LineString as a Vec of Coords
sourcepub fn lines(&self) -> impl ExactSizeIterator + Iterator<Item = Line<T>> + '_
pub fn lines(&self) -> impl ExactSizeIterator + Iterator<Item = Line<T>> + '_
Return an iterator yielding one Line for each line segment
in the LineString.
Examples
use geo_types::{coord, Line, LineString};
let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
let line_string: LineString<f32> = coords.into_iter().collect();
let mut lines = line_string.lines();
assert_eq!(
Some(Line::new(
coord! { x: 0., y: 0. },
coord! { x: 5., y: 0. }
)),
lines.next()
);
assert_eq!(
Some(Line::new(
coord! { x: 5., y: 0. },
coord! { x: 7., y: 9. }
)),
lines.next()
);
assert!(lines.next().is_none());sourcepub fn triangles(
&self
) -> impl ExactSizeIterator + Iterator<Item = Triangle<T>> + '_
pub fn triangles( &self ) -> impl ExactSizeIterator + Iterator<Item = Triangle<T>> + '_
An iterator which yields the coordinates of a LineString as Triangles
sourcepub fn close(&mut self)
pub fn close(&mut self)
Close the LineString. Specifically, if the LineString has at least one Coord, and
the value of the first Coord does not equal the value of the last Coord, then a
new Coord is added to the end with the value of the first Coord.
sourcepub fn num_coords(&self) -> usize
👎Deprecated: Use geo::CoordsIter::coords_count instead
pub fn num_coords(&self) -> usize
Return the number of coordinates in the LineString.
Examples
use geo_types::LineString;
let mut coords = vec![(0., 0.), (5., 0.), (7., 9.)];
let line_string: LineString<f32> = coords.into_iter().collect();
assert_eq!(3, line_string.num_coords());sourcepub fn is_closed(&self) -> bool
pub fn is_closed(&self) -> bool
Checks if the linestring is closed; i.e. it is either empty or, the first and last points are the same.
Examples
use geo_types::LineString;
let mut coords = vec![(0., 0.), (5., 0.), (0., 0.)];
let line_string: LineString<f32> = coords.into_iter().collect();
assert!(line_string.is_closed());Note that we diverge from some libraries (JTS et al), which have a LinearRing type,
separate from LineString. Those libraries treat an empty LinearRing as closed by
definition, while treating an empty LineString as open. Since we don’t have a separate
LinearRing type, and use a LineString in its place, we adopt the JTS LinearRing is_closed
behavior in all places: that is, we consider an empty LineString as closed.
This is expected when used in the context of a Polygon.exterior and elsewhere; And there
seems to be no reason to maintain the separate behavior for LineStrings used in
non-LinearRing contexts.
Trait Implementations§
source§impl<T: AbsDiffEq<Epsilon = T> + CoordNum> AbsDiffEq<LineString<T>> for LineString<T>
impl<T: AbsDiffEq<Epsilon = T> + CoordNum> AbsDiffEq<LineString<T>> for LineString<T>
source§fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool
Equality assertion with an absolute limit.
Examples
use geo_types::LineString;
let mut coords_a = vec![(0., 0.), (5., 0.), (7., 9.)];
let a: LineString<f32> = coords_a.into_iter().collect();
let mut coords_b = vec![(0., 0.), (5., 0.), (7.001, 9.)];
let b: LineString<f32> = coords_b.into_iter().collect();
approx::assert_relative_eq!(a, b, epsilon=0.1)source§fn default_epsilon() -> Self::Epsilon
fn default_epsilon() -> Self::Epsilon
source§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq.source§impl<T: Clone + CoordNum> Clone for LineString<T>
impl<T: Clone + CoordNum> Clone for LineString<T>
source§fn clone(&self) -> LineString<T>
fn clone(&self) -> LineString<T>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl<'de, T> Deserialize<'de> for LineString<T>where
T: Deserialize<'de> + CoordNum,
impl<'de, T> Deserialize<'de> for LineString<T>where T: Deserialize<'de> + CoordNum,
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where __D: Deserializer<'de>,
source§impl<T: CoordNum> From<LineString<T>> for Geometry<T>
impl<T: CoordNum> From<LineString<T>> for Geometry<T>
source§fn from(x: LineString<T>) -> Self
fn from(x: LineString<T>) -> Self
source§impl<T: CoordNum, IC: Into<Coord<T>>> From<Vec<IC, Global>> for LineString<T>
impl<T: CoordNum, IC: Into<Coord<T>>> From<Vec<IC, Global>> for LineString<T>
Turn a Vec of Point-like objects into a LineString.
source§impl<T: CoordNum, IC: Into<Coord<T>>> FromIterator<IC> for LineString<T>
impl<T: CoordNum, IC: Into<Coord<T>>> FromIterator<IC> for LineString<T>
Turn an iterator of Point-like objects into a LineString.
source§fn from_iter<I: IntoIterator<Item = IC>>(iter: I) -> Self
fn from_iter<I: IntoIterator<Item = IC>>(iter: I) -> Self
source§impl<'a, T: CoordNum> IntoIterator for &'a LineString<T>
impl<'a, T: CoordNum> IntoIterator for &'a LineString<T>
source§impl<'a, T: CoordNum> IntoIterator for &'a mut LineString<T>
impl<'a, T: CoordNum> IntoIterator for &'a mut LineString<T>
Mutably iterate over all the Coords in this LineString
source§impl<T: CoordNum> IntoIterator for LineString<T>
impl<T: CoordNum> IntoIterator for LineString<T>
Iterate over all the Coords in this LineString.
source§impl<T: PartialEq + CoordNum> PartialEq<LineString<T>> for LineString<T>
impl<T: PartialEq + CoordNum> PartialEq<LineString<T>> for LineString<T>
source§fn eq(&self, other: &LineString<T>) -> bool
fn eq(&self, other: &LineString<T>) -> bool
self and other values to be equal, and is used
by ==.source§impl<T> RelativeEq<LineString<T>> for LineString<T>where
T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
impl<T> RelativeEq<LineString<T>> for LineString<T>where T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,
source§fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_eq( &self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
Equality assertion within a relative limit.
Examples
use geo_types::LineString;
let mut coords_a = vec![(0., 0.), (5., 0.), (7., 9.)];
let a: LineString<f32> = coords_a.into_iter().collect();
let mut coords_b = vec![(0., 0.), (5., 0.), (7.001, 9.)];
let b: LineString<f32> = coords_b.into_iter().collect();
approx::assert_relative_eq!(a, b, max_relative=0.1)source§fn default_max_relative() -> Self::Epsilon
fn default_max_relative() -> Self::Epsilon
source§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool
RelativeEq::relative_eq.source§impl<T: CoordNum> TryFrom<Geometry<T>> for LineString<T>
impl<T: CoordNum> TryFrom<Geometry<T>> for LineString<T>
Convert a Geometry enum into its inner type.
Fails if the enum case does not match the type you are trying to convert it to.