1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/*
Copyright (c) 2023 Michał Wilczek, Michał Margos
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
use std::sync::Arc;
use std::{collections::HashMap, rc::Rc};
use serde::Serialize;
use uuid::Uuid;
use crate::generator::expression::expr::{AngleLine, AnglePoint};
use crate::generator::expression::{LineExpr, PointExpr, ScalarExpr};
use crate::generator::geometry::get_line;
use crate::labels::point_label_position;
use crate::script::figure::{MathString, Style};
use crate::{
generator::{
critic::EvaluationArgs, expression::Expression, expression::Line, geometry, Adjustable,
Complex, Flags,
},
script::{figure::Figure, HashableArc},
};
#[cfg(test)]
mod tests {
use std::str::FromStr;
use std::{path::PathBuf, sync::Arc};
use crate::drawer::Draw;
use crate::generator::fast_float::FastFloat;
use crate::script::figure::{MathChar, MathIndex, MathSpecial, MathString};
use crate::script::token::{Position, Span};
use crate::{
drawer,
generator::{
expression::{expr::FreePoint, Expression, PointExpr},
Adjustable, Complex,
},
script::figure::{Figure, Style},
};
use super::project;
/// Utility function used in fn `test_project()`, it makes the code below less messy and more readable.
fn create_point_expr(index: usize) -> Arc<Expression<PointExpr>> {
Arc::new(Expression::new(
PointExpr::Free(FreePoint { index }),
FastFloat::One,
))
}
/// Function that tests the performance of the projector and drawers.
#[test]
fn test_project() {
//let x: u8 = 1;
let gen_points: [(Adjustable, f64); 3] = [
(
Adjustable::Point(Complex {
real: 0.3463,
imaginary: 0.436,
}),
1.0,
),
(
Adjustable::Point(Complex {
real: 0.23,
imaginary: 0.87,
}),
1.0,
),
(
Adjustable::Point(Complex {
real: 0.312,
imaginary: 0.314,
}),
1.0,
),
];
let fig = Figure {
points: vec![
(
create_point_expr(0),
MathString {
chars: vec![
MathChar::Special(MathSpecial::AlphaUpper),
MathChar::SetIndex(MathIndex::Lower),
MathChar::Ascii('X'),
],
span: Span {
start: Position { line: 0, column: 0 },
end: Position { line: 0, column: 0 },
},
},
),
(create_point_expr(1), MathString::from_str("B").unwrap()),
(create_point_expr(2), MathString::from_str("C").unwrap()),
],
lines: Vec::new(), /* vec![
(
Arc::new(Expression::new(
LineExpr::Line(LinePoint {
a: create_point_expr(0),
b: create_point_expr(1),
}),
FastFloat::One,
)),
Style::Dashed,
),
(
Arc::new(Expression::new(
LineExpr::Line(LinePoint {
a: create_point_expr(1),
b: create_point_expr(2),
}),
FastFloat::One,
)),
Style::default(),
),
(
Arc::new(Expression::new(
LineExpr::Line(LinePoint {
a: create_point_expr(2),
b: create_point_expr(0),
}),
FastFloat::One,
)),
Style::default(),
),
],*/
angles: Vec::new(), /*vec![(
Arc::new(Expression::new(
ScalarExpr::AnglePoint(AnglePoint {
arm1: create_point_expr(0),
origin: create_point_expr(1),
arm2: create_point_expr(2),
}),
FastFloat::One,
)),
x,
Style::Dashed,
)],*/
segments: vec![
//(create_point_expr(0), create_point_expr(1), Style::default()),
(create_point_expr(1), create_point_expr(2), Style::default()),
(create_point_expr(2), create_point_expr(0), Style::default()),
],
rays: Vec::new(), /*vec![
(create_point_expr(0), create_point_expr(1), Style::Solid),
(create_point_expr(1), create_point_expr(2), Style::Solid),
(create_point_expr(2), create_point_expr(0), Style::Solid),
],*/
circles: Vec::new(), /*vec![(
Arc::new(Expression::new(
CircleExpr::CenterRadius(CenterRadius {
center: create_point_expr(0),
radius: Arc::new(Expression::new(
ScalarExpr::Literal(Literal { value: 0.124 }),
FastFloat::One,
)),
}),
FastFloat::One,
)),
Style::Dashed,
)], */
canvas_size: (200, 200),
};
let path_latex = PathBuf::from("testoutputs//test.latex");
let _path_svg = PathBuf::from("testoutputs//test.svg");
let path_json = PathBuf::from("testoutputs//test.json");
let _path_raw = PathBuf::from("testoutputs//test.raw");
let pr = &project(&fig, &gen_points, &Arc::default());
//drawer::latex::draw(&path_latex, (fig.canvas_size.0, fig.canvas_size.1), pr);
let width = fig.canvas_size.0;
let height = fig.canvas_size.1;
#[allow(clippy::cast_precision_loss)]
let mut latex = drawer::Latex {canvas_size: (width, height), scale: f64::min(10.0 / fig.canvas_size.0 as f64, 10.0 / fig.canvas_size.1 as f64), content: String::default() };
latex.draw(&path_latex, pr).expect("error");
let mut json = drawer::Json {canvas_size: (width, height), content: String::default()};
json.draw(&path_json, pr).expect("error");
//drawer::svg::draw(&path_svg, (fig.canvas_size.0, fig.canvas_size.1), pr);
//drawer::json::draw(&path_json, (fig.canvas_size.0, fig.canvas_size.1), pr);
//drawer::raw::draw(&path_raw, (fig.canvas_size.0, fig.canvas_size.1), pr);
}
}
/// Enum representing the things that are later drawn in the drawers.
#[derive(Serialize)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
pub enum Rendered {
Point(Rc<RenderedPoint>),
Line(RenderedLine),
Angle(RenderedAngle),
Segment(RenderedSegment),
Ray(RenderedRay),
Circle(RenderedCircle),
}
/// The final product passed to the drawers.
#[derive(Serialize)]
pub struct Output {
/// Map containing Expression (points) as keys and point structs as values
pub map: HashMap<HashableArc<Expression<PointExpr>>, Rc<RenderedPoint>>,
/// final product of the project function
pub vec_rendered: Vec<Rendered>,
}
#[derive(Debug, Serialize)]
pub struct RenderedPoint {
/// Label's position
pub label_position: Complex,
/// Point's position
pub position: Complex,
/// Point's custom uuid
pub uuid: Uuid,
/// Math string assigned to the point
pub math_string: MathString,
}
#[derive(Serialize)]
pub struct RenderedLine {
/// The line's label
pub label: String,
/// Two ends of the line
pub points: (Complex, Complex),
/// Expression defining the line
pub expr: Arc<Expression<LineExpr>>,
/// Enum defining the style in which the expression should be drawn
pub style: Style,
}
#[derive(Serialize)]
pub struct RenderedAngle {
/// The angle's label
pub label: String,
/// Points defining the angle
pub points: (Complex, Complex, Complex),
/// Number of arcs in the angle
pub no_arcs: u8,
/// Expression that the angle was defined by
pub expr: Arc<Expression<ScalarExpr>>,
/// Value of the angle (who'd have guessed)
pub angle_value: f64,
/// Enum defining the style in which the expression should be drawn
pub style: Style,
}
#[derive(Serialize)]
pub struct RenderedSegment {
/// Label of the segment
pub label: String,
/// Points defining the segment
pub points: (Complex, Complex),
/// Enum defining the style in which the expression should be drawn
pub style: Style,
}
#[derive(Serialize)]
pub struct RenderedRay {
/// Ray's label
pub label: String,
/// Points defining the ray
pub points: (Complex, Complex),
/// Second drawing point
pub draw_point: Complex,
/// Enum defining the style in which the expression should be drawn
pub style: Style,
}
#[derive(Serialize)]
pub struct RenderedCircle {
/// Circle's label
pub label: String,
/// Center of the circle
pub center: Complex,
/// Drawing point
pub draw_point: Complex,
/// Radius
pub radius: f64,
/// Enum defining the style in which the expression should be drawn
pub style: Style,
}
/// Function getting the points defining the angle from the Expression defining it.
///
/// # Panics
/// It panics when the two lines that you are trying find crossing point of, are parallel.
fn get_angle_points(
angle: &Arc<Expression<ScalarExpr>>,
args: &EvaluationArgs,
) -> (Complex, Complex, Complex) {
match &angle.kind {
ScalarExpr::AnglePoint(AnglePoint { arm1, origin, arm2 }) => {
let arm1 = arm1.evaluate(args);
let origin = origin.evaluate(args);
let arm2 = arm2.evaluate(args);
(arm1, origin, arm2)
}
ScalarExpr::AngleLine(AngleLine { k, l }) => {
let ev_ln1 = k.evaluate(args);
let ev_ln2 = l.evaluate(args);
let origin = geometry::get_intersection(ev_ln1, ev_ln2);
(
ev_ln1.origin + ev_ln1.direction,
origin,
ev_ln2.origin + ev_ln2.direction,
)
}
_ => unreachable!(),
}
}
/// Function getting the intersection points of the line with the picture's frame.
fn get_line_ends(figure: &Figure, ln_c: Line) -> (Complex, Complex) {
fn choose_intersection(i: usize, j: usize) -> impl Fn(f64, &[Complex]) -> Complex {
move |width, intersections| {
let x = intersections[i];
if x.real > 0f64 && x.real < width {
x
} else {
intersections[j]
}
}
}
// +--0--+
// | |
// 1 2
// | |
// +--3--+
#[allow(clippy::cast_precision_loss)]
let width = figure.canvas_size.0 as f64;
#[allow(clippy::cast_precision_loss)]
let height = figure.canvas_size.1 as f64;
let intersections = [
geometry::get_intersection(
ln_c,
geometry::get_line(Complex::new(0.0, height), Complex::new(1.0, height)),
),
geometry::get_intersection(
ln_c,
geometry::get_line(Complex::new(0.0, 0.0), Complex::new(0.0, 1.0)),
),
geometry::get_intersection(
ln_c,
geometry::get_line(Complex::new(width, 0.0), Complex::new(width, 1.0)),
),
geometry::get_intersection(
ln_c,
geometry::get_line(Complex::new(0.0, 0.0), Complex::new(1.0, 0.0)),
),
];
// If the product of the real and imaginary is negative, line is "going down".
let a = ln_c.direction.imaginary * ln_c.direction.real;
#[allow(clippy::cast_precision_loss)]
if a < 0f64 {
// There must be one intersection with lines 0/1 and 2/3
let i1 = choose_intersection(0, 1)(width, &intersections);
let i2 = choose_intersection(3, 2)(width, &intersections);
(i1, i2)
} else {
// There must be one intersection with lines 1/3 and 0/2
let i1 = choose_intersection(3, 1)(width, &intersections);
let i2 = choose_intersection(0, 2)(width, &intersections);
(i1, i2)
}
}
/// Pure utitlity function, used for scaling and transforming points which were missed by fn `project`().
fn transform(offset: Complex, scale: f64, size: Complex, pt: Complex) -> Complex {
(pt - offset) * scale + size
}
/// Function that outputs the vector contaning the lines.
/// ///
/// # Panics
/// It shouldn't panic.
fn lines(
figure: &Figure,
offset: Complex,
scale: f64,
size: Complex,
args: &EvaluationArgs,
) -> Vec<RenderedLine> {
let mut blueprint_lines = Vec::new();
for ln in &figure.lines {
let mut ln_c = ln.0.evaluate(args);
ln_c.origin = transform(offset, scale, size, ln_c.origin);
let line_ends = get_line_ends(figure, ln_c);
blueprint_lines.push(RenderedLine {
label: String::new(),
points: (line_ends.0, line_ends.1),
expr: Arc::clone(&ln.0),
style: ln.1,
});
}
blueprint_lines
}
/// Function that outputs the vector containing the angles.
///
/// # Panics
/// It shouldn't panic.
fn angles(
figure: &Figure,
offset: Complex,
scale: f64,
size: Complex,
args: &EvaluationArgs,
) -> Vec<RenderedAngle> {
let mut blueprint_angles = Vec::new();
for ang in &figure.angles {
let angle_points = get_angle_points(&ang.0, args);
blueprint_angles.push(RenderedAngle {
label: String::new(),
points: (
transform(offset, scale, size, angle_points.0),
transform(offset, scale, size, angle_points.1),
transform(offset, scale, size, angle_points.2),
),
no_arcs: ang.1,
expr: Arc::clone(&ang.0),
angle_value: ang.0.evaluate(args),
style: ang.2,
});
}
blueprint_angles
}
/// Function that outputs the vector contaning the segments.
///
/// # Panics
/// It shouldn't panic.
fn segments(
figure: &Figure,
offset: Complex,
scale: f64,
size: Complex,
args: &EvaluationArgs,
) -> Vec<RenderedSegment> {
let mut blueprint_segments = Vec::new();
for segment in &figure.segments {
let seg1 = segment.0.evaluate(args);
let seg2 = segment.1.evaluate(args);
blueprint_segments.push(RenderedSegment {
label: String::new(),
points: (
transform(offset, scale, size, seg1),
transform(offset, scale, size, seg2),
),
style: segment.2,
});
}
blueprint_segments
}
fn rays(
figure: &Figure,
offset: Complex,
scale: f64,
size: Complex,
args: &EvaluationArgs,
) -> Vec<RenderedRay> {
let mut blueprint_rays = Vec::new();
for ray in &figure.rays {
let ray_a = ray.0.evaluate(args);
let ray_b = ray.1.evaluate(args);
let ray_a = transform(offset, scale, size, ray_a);
let ray_b = transform(offset, scale, size, ray_b);
let line = get_line(ray_a, ray_b);
let intercepts = get_line_ends(figure, line);
let vec1 = (ray_b - ray_a).normalize();
let vec2 = (intercepts.1 - ray_a).normalize();
let second_point;
if vec1.real < 0.5 && vec1.real > -0.5 {
if (vec1.imaginary - vec2.imaginary).abs() < 1e-4 {
second_point = intercepts.1;
} else {
second_point = intercepts.0;
}
} else if (vec1.real - vec2.real).abs() < 1e-4 {
second_point = intercepts.1;
} else {
second_point = intercepts.0;
}
blueprint_rays.push(RenderedRay {
label: String::new(),
points: (ray_a, second_point),
draw_point: ray_b,
style: ray.2,
});
}
blueprint_rays
}
fn circles(
figure: &Figure,
offset: Complex,
scale: f64,
size: Complex,
args: &EvaluationArgs,
) -> Vec<RenderedCircle> {
let mut blueprint_circles = Vec::new();
for circle_main in &figure.circles {
let circle = circle_main.0.evaluate(args);
let center = transform(offset, scale, size, circle.center);
let draw_point = Complex::new(circle.center.real + circle.radius, circle.center.imaginary);
let sc_rad = circle.radius * scale;
blueprint_circles.push(RenderedCircle {
label: String::new(),
center,
draw_point: transform(offset, scale, size, draw_point),
radius: sc_rad,
style: circle_main.1,
});
}
blueprint_circles
}
/// Takes the figure and rendered points and attempts to design a figure that can then be rendered in chosen format.
///
/// # Panics
/// Despite containing .unwrap() calls, it shouldn't panic.
///
/// # Errors
/// Returns an error if there is a problem with evaluating constructs (e. g. intersection of two parallel lines).
pub fn project(
figure: &Figure,
generated_points: &[(Adjustable, f64)],
flags: &Arc<Flags>,
) -> Output {
let args = EvaluationArgs {
adjustables: generated_points,
generation: 0,
flags,
cache: None,
};
let points: Vec<Complex> = figure
.points
.iter()
.map(|pt| {
// println!("{pt:#?}");
pt.0.evaluate(&args)
})
.collect::<Vec<Complex>>();
#[allow(clippy::cast_precision_loss)]
let size1 = Complex::new(figure.canvas_size.0 as f64, figure.canvas_size.1 as f64);
let size09 = size1 * 0.9;
let size005 = size1 * 0.05;
// Frame top left point.
let mut offset = points.get(0).copied().unwrap_or_default();
//noinspection DuplicatedCode
for x in &points {
if x.real < offset.real {
offset.real = x.real;
}
if x.imaginary < offset.imaginary {
offset.imaginary = x.imaginary;
}
}
// println!("Points pre-offset: {:?}", points);
// println!("Offset: {offset}");
let points: Vec<Complex> = points.into_iter().map(|x| x - offset).collect();
// println!("Points post-offset: {:?}", points);
// Frame bottom right point.
let mut furthest = points.get(0).copied().unwrap_or_default();
//noinspection DuplicatedCode
for x in &points {
if x.real > furthest.real {
furthest.real = x.real;
}
if x.imaginary > furthest.imaginary {
furthest.imaginary = x.imaginary;
}
}
// The scaled frame should be at most (and equal for at least one dimension) 90% of the size of the desired image (margins for rendering).
let scale = f64::min(
size09.real / furthest.real,
size09.imaginary / furthest.imaginary,
);
// println!("furthest: {furthest}, scale: {scale}");
let points: Vec<Complex> = points.into_iter().map(|x| x * scale + size005).collect();
// println!("{points:#?}");
//let points = points(figure, generated_points, flags);
let mut vec_associated = Vec::new();
let mut blueprint_points = Vec::new();
let blueprint_lines = lines(figure, offset, scale, size005, &args);
let blueprint_angles = angles(figure, offset, scale, size005, &args);
let blueprint_segments = segments(figure, offset, scale, size005, &args);
let blueprint_rays = rays(figure, offset, scale, size005, &args);
let blueprint_circles = circles(figure, offset, scale, size005, &args);
for (i, pt) in points.iter().enumerate() {
let math_string = figure.points[i].1.clone();
let id = Uuid::new_v4();
let point = *pt;
blueprint_points.push(Rc::new(RenderedPoint {
label_position: point_label_position(
&blueprint_lines,
&blueprint_angles,
&blueprint_segments,
&blueprint_rays,
&blueprint_circles,
vec_associated.clone(),
point,
),
position: *pt,
uuid: id,
math_string,
}));
vec_associated.clear();
}
// Creating a HashMap (the bridge between Expressions defining the points and those points).
let mut iden = HashMap::new();
for (i, pt) in figure.points.clone().iter().enumerate() {
let point = HashableArc::new(Arc::clone(&pt.0));
iden.insert(point, Rc::clone(&blueprint_points[i]));
}
Output {
map: iden,
vec_rendered: blueprint_points
.into_iter()
.map(Rendered::Point)
.chain(blueprint_lines.into_iter().map(Rendered::Line))
.chain(blueprint_angles.into_iter().map(Rendered::Angle))
.chain(blueprint_segments.into_iter().map(Rendered::Segment))
.chain(blueprint_rays.into_iter().map(Rendered::Ray))
.chain(blueprint_circles.into_iter().map(Rendered::Circle))
.collect(),
}
}