1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
//! A solution strategy for finding the best chromosome, when search space is convex with little local optima or crossover is impossible or inefficient
mod builder;
pub mod prelude;
mod reporter;

pub use self::builder::{
    Builder as HillClimbBuilder, TryFromBuilderError as TryFromHillClimbBuilderError,
};

use super::{Strategy, StrategyAction, StrategyConfig, StrategyState};
use crate::chromosome::Chromosome;
use crate::fitness::{Fitness, FitnessOrdering, FitnessValue};
use crate::genotype::IncrementalGenotype;
use crate::population::Population;
use rand::prelude::SliceRandom;
use rand::rngs::SmallRng;
use std::cell::RefCell;
use std::collections::HashMap;
use std::fmt;
use std::time::{Duration, Instant};
use thread_local::ThreadLocal;

pub use self::reporter::Log as HillClimbReporterLog;
pub use self::reporter::Noop as HillClimbReporterNoop;
pub use self::reporter::Reporter as HillClimbReporter;
pub use self::reporter::Simple as HillClimbReporterSimple;

#[derive(Clone, Debug, Default)]
pub enum HillClimbVariant {
    #[default]
    Stochastic,
    StochasticSecondary,
    SteepestAscent,
    SteepestAscentSecondary,
}

/// The HillClimb strategy is an iterative algorithm that starts with an arbitrary solution to a
/// problem, then attempts to find a better solution by making an incremental change to the
/// solution
///
/// There are 4 variants:
/// * [HillClimbVariant::Stochastic]: does not examine all neighbors before deciding how to move.
///   Rather, it selects a neighbor at random, and decides (based on the improvement in that
///   neighbour) whether to move to that neighbor or to examine another
/// * [HillClimbVariant::SteepestAscent]: all neighbours are compared and the one with the best
///   improvement is chosen.
/// * [HillClimbVariant::StochasticSecondary]: like Stochastic, but also randomly tries a random
///   neighbour of the neighbour. Useful when a single mutation would generally not lead to
///   improvement, because the problem space behaves more like a
///   [UniqueGenotype](crate::genotype::UniqueGenotype) where genes must be swapped (but the
///   UniqueGenotype doesn't map to the problem space well)
/// * [HillClimbVariant::SteepestAscentSecondary]: like SteepestAscent, but also neighbours of
///   neighbours are in scope. This is O(n^2) with regards to the SteepestAscent variant, so use
///   with caution.
///
/// The ending conditions are one or more of the following:
/// * target_fitness_score: when the ultimate goal in terms of fitness score is known and reached
/// * max_stale_generations: when the ultimate goal in terms of fitness score is unknown and one depends on some convergion
///   threshold, or one wants a duration limitation next to the target_fitness_score
///
/// There are optional mutation distance limitations for
/// [RangeGenotype](crate::genotype::RangeGenotype) and
/// [MultiRangeGenotype](crate::genotype::MultiRangeGenotype) neighbouring chromosomes. Listed in
/// descending priority:
/// * With allele_mutation_scaled_range(s) set on genotype:
///     * Mutation distance only on edges of current scale (e.g. -1 and +1 for -1..-1 scale)
///         * Pick random edge for [HillClimbVariant::Stochastic]
///         * Take both edges per gene for [HillClimbVariant::SteepestAscent]
///     * Scale down after max_stale_generations is reached and reset stale_generations to zero
///     * Only trigger max_stale_generations ending condition when already reached the smallest scale
/// * With allele_mutation_range(s) set on genotype:
///     * Mutation distance taken uniformly from mutation range
///         * Sample single random value for [HillClimbVariant::Stochastic]
///         * Ensure to sample both a higer and lower value per gene for [HillClimbVariant::SteepestAscent]
///     * Standard max_stale_generations ending condition
/// * With only allele_range(s) set on genotype:
///     * Mutate uniformly over the complete allele range
///         * Sample single random value for [HillClimbVariant::Stochastic]
///         * Not valid for [HillClimbVariant::SteepestAscent]
///     * Standard max_stale_generations ending condition
///
/// Using scaling for [HillClimbVariant::StochasticSecondary] and
/// [HillClimbVariant::SteepestAscentSecondary] doesn't make sense, though it will work.
///
/// There are reporting hooks in the loop receiving the [HillClimbState], which can by handled by an
/// [HillClimbReporter] (e.g. [HillClimbReporterNoop], [HillClimbReporterSimple]). But you are encouraged to
/// roll your own, see [HillClimbReporter].
///
/// From the [HillClimbBuilder] level, there are several calling mechanisms:
/// * [call](HillClimbBuilder::call): this runs a single [HillClimb] strategy
/// * [call_repeatedly](HillClimbBuilder::call_repeatedly): this runs multiple independent [HillClimb]
///   strategies and returns the best one (or short circuits when the target_fitness_score is
///   reached)
/// * [call_par_repeatedly](HillClimbBuilder::call_par_repeatedly): this runs multiple independent
///   [HillClimb] strategies in parallel and returns the best one (or short circuits when the
///   target_fitness_score is reached). This is separate and independent from the
///   `with_par_fitness()` flag on the builder, which determines multithreading of the fitness
///   calculation inside the [HillClimb] strategy. Both can be combined.
///
/// Multithreading inside the [HillClimbVariant::Stochastic] and
/// [HillClimbVariant::StochasticSecondary] using the `with_par_fitness()` builder step does
/// nothing, due to the sequential nature of the search. But
/// [call_par_repeatedly](HillClimbBuilder::call_par_repeatedly) still effectively multithreads for
/// these variants as the sequential nature is only internal to the [HillClimb] strategy.
///
/// All multithreading mechanisms are implemented using [rayon::iter] and [std::sync::mpsc].
///
/// See [HillClimbBuilder] for initialization options.
///
/// Example:
/// ```
/// use genetic_algorithm::strategy::hill_climb::prelude::*;
/// use genetic_algorithm::fitness::placeholders::SumGenes;
///
/// // the search space
/// let genotype = RangeGenotype::builder()     // f32 alleles
///     .with_genes_size(16)                    // 16 genes
///     .with_allele_range(0.0..=1.0)           // allow gene values between 0.0 and 1.0
///     .with_allele_mutation_range(-0.1..=0.1) // neighbouring step size randomly sampled from range
///     .with_allele_mutation_scaled_range(vec![
///       -0.1..=0.1,
///       -0.01..=0.01,
///       -0.001..=0.001
///      ]) // neighbouring step size equal to start/end of each scaled range
///     .build()
///     .unwrap();
///
/// // the search strategy
/// let hill_climb = HillClimb::builder()
///     .with_genotype(genotype)
///     .with_variant(HillClimbVariant::SteepestAscent)   // check all neighbours for each round
///     .with_fitness(SumGenes::new_with_precision(1e-5)) // sum the gene values of the chromosomes with precision 0.00001, which means multiply fitness score (isize) by 100_000
///     .with_fitness_ordering(FitnessOrdering::Minimize) // aim for the lowest sum
///     .with_par_fitness(true)                           // optional, defaults to false, use parallel fitness calculation
///     .with_target_fitness_score(10)                    // ending condition if sum of genes is <= 0.00010 in the best chromosome
///     .with_valid_fitness_score(100)                    // block ending conditions until at least the sum of genes <= 0.00100 is reached in the best chromosome
///     .with_max_stale_generations(1000)                 // stop searching if there is no improvement in fitness score for 1000 generations
///     .with_replace_on_equal_fitness(true)              // optional, defaults to true, crucial for some type of problems with discrete fitness steps like nqueens
///     .with_reporter(HillClimbReporterSimple::new(100)) // optional, report every 100 generations
///     .with_rng_seed_from_u64(0)                        // for testing with deterministic results
///     .call()
///     .unwrap();
///
/// // it's all about the best chromosome after all
/// let best_chromosome = hill_climb.best_chromosome().unwrap();
/// assert_eq!(best_chromosome.genes.into_iter().map(|v| v <= 1e-3).collect::<Vec<_>>(), vec![true; 16])
/// ```
pub struct HillClimb<
    G: IncrementalGenotype,
    F: Fitness<Genotype = G>,
    SR: HillClimbReporter<Genotype = G>,
> {
    pub genotype: G,
    pub fitness: F,
    pub config: HillClimbConfig,
    pub state: HillClimbState<G>,
    pub reporter: SR,
    pub rng: SmallRng,
}

pub struct HillClimbConfig {
    pub variant: HillClimbVariant,
    pub fitness_ordering: FitnessOrdering,
    pub par_fitness: bool,
    pub max_stale_generations: Option<usize>,
    pub target_fitness_score: Option<FitnessValue>,
    pub valid_fitness_score: Option<FitnessValue>,
    pub replace_on_equal_fitness: bool,
}

/// Stores the state of the HillClimb strategy. Next to the expected general fields, the following
/// strategy specific fields are added:
/// * current_scale_index: current index of [IncrementalGenotype]'s allele_mutation_scaled_range
/// * max_scale_index: max index of [IncrementalGenotype]'s allele_mutation_scaled_range
/// * contending_chromosome: available for all [variants](HillClimbVariant)
/// * neighbouring_population: only available for SteepestAscent [variants](HillClimbVariant)
pub struct HillClimbState<G: IncrementalGenotype> {
    pub current_iteration: usize,
    pub current_generation: usize,
    pub stale_generations: usize,
    pub best_generation: usize,
    pub best_chromosome: Chromosome<G>,
    pub durations: HashMap<StrategyAction, Duration>,

    pub current_scale_index: Option<usize>,
    pub max_scale_index: usize,
    pub chromosome: Chromosome<G>,
    pub population: Population<G>,
}

impl<G: IncrementalGenotype, F: Fitness<Genotype = G>, SR: HillClimbReporter<Genotype = G>>
    Strategy<G> for HillClimb<G, F, SR>
{
    fn call(&mut self) {
        let now = Instant::now();
        let mut fitness_thread_local: Option<ThreadLocal<RefCell<F>>> = None;
        if self.config.par_fitness {
            fitness_thread_local = Some(ThreadLocal::new());
        }

        self.init();
        self.reporter.on_start(&self.state, &self.config);
        while !self.is_finished() {
            self.state.current_generation += 1;
            match self.config.variant {
                HillClimbVariant::Stochastic => {
                    self.state.chromosome = self.state.best_chromosome_as_ref().clone();
                    self.genotype.mutate_chromosome_genes(
                        1,
                        true,
                        &mut self.state.chromosome,
                        self.state.current_scale_index,
                        &mut self.rng,
                    );
                    self.fitness.call_for_state_chromosome(&mut self.state);
                    self.state.update_best_chromosome_from_state_chromosome(
                        &self.config,
                        &mut self.reporter,
                    );
                }
                HillClimbVariant::StochasticSecondary => {
                    self.state.chromosome = self.state.best_chromosome_as_ref().clone();
                    self.genotype.mutate_chromosome_genes(
                        1,
                        true,
                        &mut self.state.chromosome,
                        self.state.current_scale_index,
                        &mut self.rng,
                    );
                    self.fitness.call_for_state_chromosome(&mut self.state);

                    self.state.update_best_chromosome_from_state_chromosome(
                        &self.config,
                        &mut self.reporter,
                    );

                    // second round
                    self.genotype.mutate_chromosome_genes(
                        1,
                        true,
                        &mut self.state.chromosome,
                        self.state.current_scale_index,
                        &mut self.rng,
                    );
                    self.fitness.call_for_state_chromosome(&mut self.state);
                    self.state.update_best_chromosome_from_state_chromosome(
                        &self.config,
                        &mut self.reporter,
                    );
                }
                HillClimbVariant::SteepestAscent => {
                    let best_chromosome = self.state.best_chromosome_as_ref();
                    self.state.population = self.genotype.neighbouring_population(
                        best_chromosome,
                        self.state.current_scale_index,
                        &mut self.rng,
                    );
                    self.fitness
                        .call_for_state_population(&mut self.state, fitness_thread_local.as_ref());
                    self.state.update_best_chromosome_from_state_population(
                        &self.config,
                        &mut self.reporter,
                        &mut self.rng,
                    );
                }
                HillClimbVariant::SteepestAscentSecondary => {
                    let best_chromosome = self.state.best_chromosome_as_ref();
                    let mut neighbouring_chromosomes = self.genotype.neighbouring_chromosomes(
                        best_chromosome,
                        self.state.current_scale_index,
                        &mut self.rng,
                    );
                    neighbouring_chromosomes.append(
                        &mut neighbouring_chromosomes
                            .iter()
                            .flat_map(|chromosome| {
                                self.genotype.neighbouring_chromosomes(
                                    chromosome,
                                    self.state.current_scale_index,
                                    &mut self.rng,
                                )
                            })
                            .collect(),
                    );
                    self.state.population = Population::new(neighbouring_chromosomes);
                    self.fitness
                        .call_for_state_population(&mut self.state, fitness_thread_local.as_ref());
                    self.state.update_best_chromosome_from_state_population(
                        &self.config,
                        &mut self.reporter,
                        &mut self.rng,
                    );
                }
            }
            self.reporter.on_new_generation(&self.state, &self.config);
            self.state.scale(&self.config);
        }
        self.state.close_duration(now.elapsed());
        self.reporter.on_finish(&self.state, &self.config);
    }
    fn best_chromosome(&self) -> Option<Chromosome<G>> {
        if self
            .genotype
            .chromosome_is_empty(&self.state.best_chromosome)
        {
            None
        } else {
            Some(self.state.best_chromosome.clone())
        }
    }
    fn best_generation(&self) -> usize {
        self.state.best_generation
    }
    fn best_fitness_score(&self) -> Option<FitnessValue> {
        self.state.best_fitness_score()
    }
}

impl<G: IncrementalGenotype, F: Fitness<Genotype = G>> HillClimb<G, F, HillClimbReporterNoop<G>> {
    pub fn builder() -> HillClimbBuilder<G, F, HillClimbReporterNoop<G>> {
        HillClimbBuilder::new()
    }
}
impl<G: IncrementalGenotype, F: Fitness<Genotype = G>, SR: HillClimbReporter<Genotype = G>>
    HillClimb<G, F, SR>
{
    pub fn init(&mut self) {
        let now = Instant::now();
        self.reporter
            .on_init(&self.genotype, &self.state, &self.config);
        self.state.chromosome = self.genotype.chromosome_factory(&mut self.rng);
        self.state.add_duration(StrategyAction::Init, now.elapsed());

        self.fitness.call_for_state_chromosome(&mut self.state);
        self.state.store_best_chromosome(true); // best by definition
        self.reporter
            .on_new_best_chromosome(&self.state, &self.config);
    }
    fn is_finished(&self) -> bool {
        self.allow_finished_by_valid_fitness_score()
            && (self.is_finished_by_max_stale_generations()
                || self.is_finished_by_target_fitness_score())
    }

    fn is_finished_by_max_stale_generations(&self) -> bool {
        if let Some(max_stale_generations) = self.config.max_stale_generations {
            self.state.stale_generations >= max_stale_generations
        } else {
            false
        }
    }

    fn is_finished_by_target_fitness_score(&self) -> bool {
        if let Some(target_fitness_score) = self.config.target_fitness_score {
            if let Some(fitness_score) = self.best_fitness_score() {
                match self.config.fitness_ordering {
                    FitnessOrdering::Maximize => fitness_score >= target_fitness_score,
                    FitnessOrdering::Minimize => fitness_score <= target_fitness_score,
                }
            } else {
                false
            }
        } else {
            false
        }
    }

    fn allow_finished_by_valid_fitness_score(&self) -> bool {
        if let Some(valid_fitness_score) = self.config.valid_fitness_score {
            if let Some(fitness_score) = self.best_fitness_score() {
                match self.config.fitness_ordering {
                    FitnessOrdering::Maximize => fitness_score >= valid_fitness_score,
                    FitnessOrdering::Minimize => fitness_score <= valid_fitness_score,
                }
            } else {
                true
            }
        } else {
            true
        }
    }
}

impl StrategyConfig for HillClimbConfig {
    fn fitness_ordering(&self) -> FitnessOrdering {
        self.fitness_ordering
    }
    fn par_fitness(&self) -> bool {
        self.par_fitness
    }
    fn replace_on_equal_fitness(&self) -> bool {
        self.replace_on_equal_fitness
    }
}

impl<G: IncrementalGenotype> StrategyState<G> for HillClimbState<G> {
    fn chromosome_as_ref(&self) -> &Chromosome<G> {
        &self.chromosome
    }
    fn chromosome_as_mut(&mut self) -> &mut Chromosome<G> {
        &mut self.chromosome
    }
    fn population_as_ref(&self) -> &Population<G> {
        &self.population
    }
    fn population_as_mut(&mut self) -> &mut Population<G> {
        &mut self.population
    }
    fn best_chromosome_as_ref(&self) -> &Chromosome<G> {
        &self.best_chromosome
    }
    fn best_generation(&self) -> usize {
        self.best_generation
    }
    fn current_generation(&self) -> usize {
        self.current_generation
    }
    fn current_iteration(&self) -> usize {
        self.current_iteration
    }
    fn stale_generations(&self) -> usize {
        self.stale_generations
    }
    fn increment_stale_generations(&mut self) {
        self.stale_generations += 1;
    }
    fn reset_stale_generations(&mut self) {
        self.stale_generations = 0;
    }
    fn store_best_chromosome(&mut self, improved_fitness: bool) -> (bool, bool) {
        self.best_chromosome = self.chromosome.clone();
        if improved_fitness {
            self.best_generation = self.current_generation;
        }
        (true, improved_fitness)
    }
    fn add_duration(&mut self, action: StrategyAction, duration: Duration) {
        *self.durations.entry(action).or_default() += duration;
    }
    fn total_duration(&self) -> Duration {
        self.durations.values().sum()
    }
}

impl<G: IncrementalGenotype> HillClimbState<G> {
    fn update_best_chromosome_from_state_chromosome<SR: HillClimbReporter<Genotype = G>>(
        &mut self,
        config: &HillClimbConfig,
        reporter: &mut SR,
    ) {
        let now = Instant::now();
        match self.update_best_chromosome(&config.fitness_ordering, config.replace_on_equal_fitness)
        {
            (true, true) => {
                reporter.on_new_best_chromosome(self, config);
                self.reset_stale_generations();
            }
            (true, false) => {
                reporter.on_new_best_chromosome_equal_fitness(self, config);
                self.increment_stale_generations()
            }
            _ => self.increment_stale_generations(),
        }
        self.add_duration(StrategyAction::UpdateBestChromosome, now.elapsed());
    }
    fn update_best_chromosome_from_state_population<SR: HillClimbReporter<Genotype = G>>(
        &mut self,
        config: &HillClimbConfig,
        reporter: &mut SR,
        rng: &mut SmallRng,
    ) {
        let now = Instant::now();
        if config.replace_on_equal_fitness {
            // shuffle, so we don't repeatedly take the same best chromosome in sideways move
            self.population.chromosomes.shuffle(rng);
        }
        if let Some(contending_chromosome) =
            self.population.best_chromosome(config.fitness_ordering)
        {
            // TODO: reference would be better
            self.chromosome = contending_chromosome.clone();
            match self
                .update_best_chromosome(&config.fitness_ordering, config.replace_on_equal_fitness)
            {
                (true, true) => {
                    reporter.on_new_best_chromosome(self, config);
                    self.reset_stale_generations();
                }
                (true, false) => {
                    reporter.on_new_best_chromosome_equal_fitness(self, config);
                    self.increment_stale_generations()
                }
                _ => self.increment_stale_generations(),
            }
        } else {
            self.increment_stale_generations();
        }
        self.add_duration(StrategyAction::UpdateBestChromosome, now.elapsed());
    }
    fn scale(&mut self, config: &HillClimbConfig) {
        if let Some(current_scale_index) = self.current_scale_index {
            if let Some(max_stale_generations) = config.max_stale_generations {
                if self.stale_generations >= max_stale_generations
                    && current_scale_index < self.max_scale_index
                {
                    self.current_scale_index = Some(current_scale_index + 1);
                    self.reset_stale_generations();
                }
            }
        }
    }
}

impl<G: IncrementalGenotype, F: Fitness<Genotype = G>, SR: HillClimbReporter<Genotype = G>>
    TryFrom<HillClimbBuilder<G, F, SR>> for HillClimb<G, F, SR>
{
    type Error = TryFromHillClimbBuilderError;

    fn try_from(builder: HillClimbBuilder<G, F, SR>) -> Result<Self, Self::Error> {
        if builder.genotype.is_none() {
            Err(TryFromHillClimbBuilderError(
                "HillClimb requires a Genotype",
            ))
        } else if builder.fitness.is_none() {
            Err(TryFromHillClimbBuilderError("HillClimb requires a Fitness"))
        } else if builder.max_stale_generations.is_none() && builder.target_fitness_score.is_none()
        {
            Err(TryFromHillClimbBuilderError(
                "HillClimb requires at least a max_stale_generations or target_fitness_score ending condition",
            ))
        } else {
            let rng = builder.rng();
            let genotype = builder.genotype.unwrap();
            let state = HillClimbState::new(&genotype);

            Ok(Self {
                genotype,
                fitness: builder.fitness.unwrap(),
                config: HillClimbConfig {
                    variant: builder.variant.unwrap_or(HillClimbVariant::Stochastic),
                    fitness_ordering: builder.fitness_ordering,
                    par_fitness: builder.par_fitness,
                    max_stale_generations: builder.max_stale_generations,
                    target_fitness_score: builder.target_fitness_score,
                    valid_fitness_score: builder.valid_fitness_score,
                    replace_on_equal_fitness: builder.replace_on_equal_fitness,
                },
                state,
                reporter: builder.reporter,
                rng,
            })
        }
    }
}

impl Default for HillClimbConfig {
    fn default() -> Self {
        Self {
            variant: HillClimbVariant::default(),
            fitness_ordering: FitnessOrdering::Maximize,
            par_fitness: false,
            max_stale_generations: None,
            target_fitness_score: None,
            valid_fitness_score: None,
            replace_on_equal_fitness: false,
        }
    }
}
impl HillClimbConfig {
    pub fn new() -> Self {
        Self::default()
    }
}

impl<G: IncrementalGenotype> HillClimbState<G> {
    pub fn new(genotype: &G) -> Self {
        let base = Self {
            current_iteration: 0,
            current_generation: 0,
            stale_generations: 0,
            current_scale_index: None,
            max_scale_index: 0,
            best_generation: 0,
            best_chromosome: genotype.chromosome_factory_empty(), //invalid, temporary
            chromosome: genotype.chromosome_factory_empty(),      //invalid, temporary
            population: Population::new_empty(),
            durations: HashMap::new(),
        };
        if let Some(max_scale_index) = genotype.max_scale_index() {
            Self {
                current_scale_index: Some(0),
                max_scale_index,
                ..base
            }
        } else {
            base
        }
    }
}

impl<G: IncrementalGenotype, F: Fitness<Genotype = G>, SR: HillClimbReporter<Genotype = G>>
    fmt::Display for HillClimb<G, F, SR>
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "hill_climb:")?;
        writeln!(f, "  genotype: {:?}", self.genotype)?;
        writeln!(f, "  fitness: {:?}", self.fitness)?;

        writeln!(f, "{}", self.config)?;
        writeln!(f, "{}", self.state)
    }
}

impl fmt::Display for HillClimbConfig {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "hill_climb_config:")?;
        writeln!(f, "  variant: {:?}", self.variant)?;

        writeln!(
            f,
            "  max_stale_generations: {:?}",
            self.max_stale_generations
        )?;
        writeln!(f, "  valid_fitness_score: {:?}", self.valid_fitness_score)?;
        writeln!(f, "  target_fitness_score: {:?}", self.target_fitness_score)?;
        writeln!(f, "  fitness_ordering: {:?}", self.fitness_ordering)?;
        writeln!(f, "  par_fitness: {:?}", self.par_fitness)
    }
}

impl<G: IncrementalGenotype> fmt::Display for HillClimbState<G> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "hill_climb_state:")?;
        writeln!(f, "  current iteration: {:?}", self.current_iteration)?;
        writeln!(f, "  current generation: {:?}", self.current_generation)?;
        writeln!(f, "  stale generations: {:?}", self.stale_generations)?;
        writeln!(
            f,
            "  scale index (current/max): {:?}/{}",
            self.current_scale_index, self.max_scale_index
        )?;
        writeln!(f, "  best fitness score: {:?}", self.best_fitness_score())?;
        writeln!(f, "  best_chromosome: {:?}", self.best_chromosome)
    }
}