pub struct LBFGSB { /* private fields */ }Expand description
The L-BFGS-B (Limited memory, bounded Broyden-Fletcher-Goldfarb-Shanno) algorithm.
This minimization Algorithm is a quasi-Newton minimizer which approximates the inverse of
the Hessian matrix using the L-BFGS update step with a modification to ensure boundary constraints
are satisfied. The L-BFGS-B algorithm is described in detail in 1.
Trait Implementations§
Source§impl<P, U, E> Algorithm<P, GradientStatus, U, E> for LBFGSBwhere
P: Gradient<U, E>,
impl<P, U, E> Algorithm<P, GradientStatus, U, E> for LBFGSBwhere
P: Gradient<U, E>,
Source§type Summary = MinimizationSummary
type Summary = MinimizationSummary
A type which holds a summary of the algorithm’s ending state.
Source§type Config = LBFGSBConfig
type Config = LBFGSBConfig
The configuration struct for the algorithm.
Source§fn initialize(
&mut self,
problem: &P,
status: &mut GradientStatus,
args: &U,
config: &Self::Config,
) -> Result<(), E>
fn initialize( &mut self, problem: &P, status: &mut GradientStatus, args: &U, config: &Self::Config, ) -> Result<(), E>
Any setup work done before the main steps of the algorithm should be done here. Read more
Source§fn step(
&mut self,
_current_step: usize,
problem: &P,
status: &mut GradientStatus,
args: &U,
config: &Self::Config,
) -> Result<(), E>
fn step( &mut self, _current_step: usize, problem: &P, status: &mut GradientStatus, args: &U, config: &Self::Config, ) -> Result<(), E>
The main “step” of an algorithm, which is repeated until termination conditions are met or
the max number of steps have been taken. Read more
Source§fn postprocessing(
&mut self,
problem: &P,
status: &mut GradientStatus,
args: &U,
config: &Self::Config,
) -> Result<(), E>
fn postprocessing( &mut self, problem: &P, status: &mut GradientStatus, args: &U, config: &Self::Config, ) -> Result<(), E>
Source§fn summarize(
&self,
_current_step: usize,
_problem: &P,
status: &GradientStatus,
_args: &U,
config: &Self::Config,
) -> Result<Self::Summary, E>
fn summarize( &self, _current_step: usize, _problem: &P, status: &GradientStatus, _args: &U, config: &Self::Config, ) -> Result<Self::Summary, E>
Generates a new
Algorithm::Summary from the current state of the Algorithm, which can be displayed or used elsewhere. Read moreSource§fn default_callbacks() -> Callbacks<Self, P, GradientStatus, U, E, Self::Config>where
Self: Sized,
fn default_callbacks() -> Callbacks<Self, P, GradientStatus, U, E, Self::Config>where
Self: Sized,
Provides a set of reasonable default callbacks specific to this
Algorithm.Source§impl<P, U, E> Terminator<LBFGSB, P, GradientStatus, U, E, LBFGSBConfig> for LBFGSBFTerminatorwhere
P: Gradient<U, E>,
impl<P, U, E> Terminator<LBFGSB, P, GradientStatus, U, E, LBFGSBConfig> for LBFGSBFTerminatorwhere
P: Gradient<U, E>,
Source§fn check_for_termination(
&mut self,
_current_step: usize,
algorithm: &mut LBFGSB,
_problem: &P,
status: &mut GradientStatus,
_args: &U,
_config: &LBFGSBConfig,
) -> ControlFlow<()>
fn check_for_termination( &mut self, _current_step: usize, algorithm: &mut LBFGSB, _problem: &P, status: &mut GradientStatus, _args: &U, _config: &LBFGSBConfig, ) -> ControlFlow<()>
A termination check which is called on each step of an
Algorithm.Source§impl<P, U, E> Terminator<LBFGSB, P, GradientStatus, U, E, LBFGSBConfig> for LBFGSBGTerminatorwhere
P: Gradient<U, E>,
impl<P, U, E> Terminator<LBFGSB, P, GradientStatus, U, E, LBFGSBConfig> for LBFGSBGTerminatorwhere
P: Gradient<U, E>,
Source§fn check_for_termination(
&mut self,
_current_step: usize,
algorithm: &mut LBFGSB,
_problem: &P,
status: &mut GradientStatus,
_args: &U,
_config: &LBFGSBConfig,
) -> ControlFlow<()>
fn check_for_termination( &mut self, _current_step: usize, algorithm: &mut LBFGSB, _problem: &P, status: &mut GradientStatus, _args: &U, _config: &LBFGSBConfig, ) -> ControlFlow<()>
A termination check which is called on each step of an
Algorithm.Source§impl<P, U, E> Terminator<LBFGSB, P, GradientStatus, U, E, LBFGSBConfig> for LBFGSBInfNormGTerminatorwhere
P: Gradient<U, E>,
impl<P, U, E> Terminator<LBFGSB, P, GradientStatus, U, E, LBFGSBConfig> for LBFGSBInfNormGTerminatorwhere
P: Gradient<U, E>,
Source§fn check_for_termination(
&mut self,
_current_step: usize,
algorithm: &mut LBFGSB,
_problem: &P,
status: &mut GradientStatus,
_args: &U,
_config: &LBFGSBConfig,
) -> ControlFlow<()>
fn check_for_termination( &mut self, _current_step: usize, algorithm: &mut LBFGSB, _problem: &P, status: &mut GradientStatus, _args: &U, _config: &LBFGSBConfig, ) -> ControlFlow<()>
A termination check which is called on each step of an
Algorithm.Auto Trait Implementations§
impl Freeze for LBFGSB
impl RefUnwindSafe for LBFGSB
impl Send for LBFGSB
impl Sync for LBFGSB
impl Unpin for LBFGSB
impl UnwindSafe for LBFGSB
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.