1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
use std::collections::HashMap;

use gaiku_common::{nalgebra::Point3, Baker, Chunk, Mesh};

mod tables;

use self::tables::{EDGE_TABLE, TRIANGLE_TABLE};

struct GridCell {
    pub value: [f32; 8],
    pub point: [Point3<f32>; 8],
}

impl GridCell {
    fn lerp(&self, index1: usize, index2: usize, isolevel: f32) -> Point3<f32> {
        let mut index1 = index1;
        let mut index2 = index2;

        if self.point[index2] < self.point[index1] {
            let temp = index1;
            index1 = index2;
            index2 = temp;
        }

        if (self.value[index1] - self.value[index2]).abs() > 0.00001 {
            self.point[index1]
                + (self.point[index2] - self.point[index1])
                    / (self.value[index2] - self.value[index1])
                    * (isolevel - self.value[index1])
        } else {
            self.point[index1]
        }
    }
}

pub struct MarchingCubesBaker;

impl MarchingCubesBaker {
    fn polygonize(grid: &GridCell, isolevel: f32, triangles: &mut Vec<[Point3<f32>; 3]>) {
        let mut cube_index = 0;
        let mut vertex_list = [Point3::<f32>::new(0.0, 0.0, 0.0); 12];

        if grid.value[0] < isolevel {
            cube_index |= 1;
        }
        if grid.value[1] < isolevel {
            cube_index |= 2;
        }
        if grid.value[2] < isolevel {
            cube_index |= 4;
        }
        if grid.value[3] < isolevel {
            cube_index |= 8;
        }
        if grid.value[4] < isolevel {
            cube_index |= 16;
        }
        if grid.value[5] < isolevel {
            cube_index |= 32;
        }
        if grid.value[6] < isolevel {
            cube_index |= 64;
        }
        if grid.value[7] < isolevel {
            cube_index |= 128;
        }

        if EDGE_TABLE[cube_index] == 0 {
            return;
        }

        if (EDGE_TABLE[cube_index] & 1) != 0 {
            vertex_list[0] = grid.lerp(0, 1, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 2) != 0 {
            vertex_list[1] = grid.lerp(1, 2, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 4) != 0 {
            vertex_list[2] = grid.lerp(2, 3, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 8) != 0 {
            vertex_list[3] = grid.lerp(3, 0, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 16) != 0 {
            vertex_list[4] = grid.lerp(4, 5, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 32) != 0 {
            vertex_list[5] = grid.lerp(5, 6, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 64) != 0 {
            vertex_list[6] = grid.lerp(6, 7, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 128) != 0 {
            vertex_list[7] = grid.lerp(7, 4, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 256) != 0 {
            vertex_list[8] = grid.lerp(0, 4, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 512) != 0 {
            vertex_list[9] = grid.lerp(1, 5, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 1024) != 0 {
            vertex_list[10] = grid.lerp(2, 6, isolevel);
        }

        if (EDGE_TABLE[cube_index] & 2048) != 0 {
            vertex_list[11] = grid.lerp(3, 7, isolevel);
        }

        let mut i = 0;

        loop {
            if TRIANGLE_TABLE[cube_index][i] == -1 {
                break;
            }

            triangles.push([
                vertex_list[TRIANGLE_TABLE[cube_index][i] as usize],
                vertex_list[TRIANGLE_TABLE[cube_index][i + 1] as usize],
                vertex_list[TRIANGLE_TABLE[cube_index][i + 2] as usize],
            ]);

            i += 3;
        }
    }
}

impl Baker for MarchingCubesBaker {
    fn bake(chunk: &Chunk) -> Option<Mesh> {
        let mut vertices_cache = HashMap::new();
        let mut indices = vec![];

        // TODO: Solve issue where data of next chunk is needed to bake the chunk
        for x in 0..chunk.width() - 1 {
            let fx = x as f32;
            for y in 0..chunk.height() - 1 {
                let fy = y as f32;
                for z in 0..chunk.depth() - 1 {
                    let fz = z as f32;

                    let grid = GridCell {
                        value: [
                            chunk.get(x + 0, y + 0, z + 0),
                            chunk.get(x + 1, y + 0, z + 0),
                            chunk.get(x + 1, y + 1, z + 0),
                            chunk.get(x + 0, y + 1, z + 0),
                            chunk.get(x + 0, y + 0, z + 1),
                            chunk.get(x + 1, y + 0, z + 1),
                            chunk.get(x + 1, y + 1, z + 1),
                            chunk.get(x + 0, y + 1, z + 1),
                        ],
                        point: [
                            Point3::new(fx + 0.0, fy + 0.0, fz + 0.0),
                            Point3::new(fx + 1.0, fy + 0.0, fz + 0.0),
                            Point3::new(fx + 1.0, fy + 1.0, fz + 0.0),
                            Point3::new(fx + 0.0, fy + 1.0, fz + 0.0),
                            Point3::new(fx + 0.0, fy + 0.0, fz + 1.0),
                            Point3::new(fx + 1.0, fy + 0.0, fz + 1.0),
                            Point3::new(fx + 1.0, fy + 1.0, fz + 1.0),
                            Point3::new(fx + 0.0, fy + 1.0, fz + 1.0),
                        ],
                    };

                    let mut triangles = vec![];
                    Self::polygonize(&grid, 0.001, &mut triangles);

                    for vertex in triangles {
                        for i in 0..3 {
                            indices.push(Self::index(&mut vertices_cache, vertex[i]));
                        }
                    }
                }
            }
        }

        let mut vertices = vec![Point3::<f32>::new(0.0, 0.0, 0.0); vertices_cache.len()];
        for (_, (vertex, index)) in vertices_cache {
            vertices[index] = vertex.clone();
        }

        if indices.len() > 0 {
            Some(Mesh {
                indices,
                vertices,
                normals: vec![],
                colors: vec![],
                uv: vec![],
                tangents: vec![],
            })
        } else {
            None
        }
    }
}