futures::io

Trait AsyncReadExt

source
pub trait AsyncReadExt: AsyncRead {
    // Provided methods
    fn chain<R>(self, next: R) -> Chain<Self, R>
       where Self: Sized,
             R: AsyncRead { ... }
    fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Read<'a, Self> 
       where Self: Unpin { ... }
    fn read_vectored<'a>(
        &'a mut self,
        bufs: &'a mut [IoSliceMut<'a>],
    ) -> ReadVectored<'a, Self> 
       where Self: Unpin { ... }
    fn read_exact<'a>(&'a mut self, buf: &'a mut [u8]) -> ReadExact<'a, Self> 
       where Self: Unpin { ... }
    fn read_to_end<'a>(
        &'a mut self,
        buf: &'a mut Vec<u8>,
    ) -> ReadToEnd<'a, Self> 
       where Self: Unpin { ... }
    fn read_to_string<'a>(
        &'a mut self,
        buf: &'a mut String,
    ) -> ReadToString<'a, Self> 
       where Self: Unpin { ... }
    fn split(self) -> (ReadHalf<Self>, WriteHalf<Self>)
       where Self: Sized + AsyncWrite { ... }
    fn take(self, limit: u64) -> Take<Self>
       where Self: Sized { ... }
    fn compat(self) -> Compat<Self> 
       where Self: Sized + Unpin { ... }
}
Expand description

An extension trait which adds utility methods to AsyncRead types.

Provided Methods§

source

fn chain<R>(self, next: R) -> Chain<Self, R>
where Self: Sized, R: AsyncRead,

Creates an adaptor which will chain this stream with another.

The returned AsyncRead instance will first read all bytes from this object until EOF is encountered. Afterwards the output is equivalent to the output of next.

§Examples
use futures::io::{AsyncReadExt, Cursor};

let reader1 = Cursor::new([1, 2, 3, 4]);
let reader2 = Cursor::new([5, 6, 7, 8]);

let mut reader = reader1.chain(reader2);
let mut buffer = Vec::new();

// read the value into a Vec.
reader.read_to_end(&mut buffer).await?;
assert_eq!(buffer, [1, 2, 3, 4, 5, 6, 7, 8]);
source

fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Read<'a, Self>
where Self: Unpin,

Tries to read some bytes directly into the given buf in asynchronous manner, returning a future type.

The returned future will resolve to the number of bytes read once the read operation is completed.

§Examples
use futures::io::{AsyncReadExt, Cursor};

let mut reader = Cursor::new([1, 2, 3, 4]);
let mut output = [0u8; 5];

let bytes = reader.read(&mut output[..]).await?;

// This is only guaranteed to be 4 because `&[u8]` is a synchronous
// reader. In a real system you could get anywhere from 1 to
// `output.len()` bytes in a single read.
assert_eq!(bytes, 4);
assert_eq!(output, [1, 2, 3, 4, 0]);
source

fn read_vectored<'a>( &'a mut self, bufs: &'a mut [IoSliceMut<'a>], ) -> ReadVectored<'a, Self>
where Self: Unpin,

Creates a future which will read from the AsyncRead into bufs using vectored IO operations.

The returned future will resolve to the number of bytes read once the read operation is completed.

source

fn read_exact<'a>(&'a mut self, buf: &'a mut [u8]) -> ReadExact<'a, Self>
where Self: Unpin,

Creates a future which will read exactly enough bytes to fill buf, returning an error if end of file (EOF) is hit sooner.

The returned future will resolve once the read operation is completed.

In the case of an error the buffer and the object will be discarded, with the error yielded.

§Examples
use futures::io::{AsyncReadExt, Cursor};

let mut reader = Cursor::new([1, 2, 3, 4]);
let mut output = [0u8; 4];

reader.read_exact(&mut output).await?;

assert_eq!(output, [1, 2, 3, 4]);
§EOF is hit before buf is filled
use futures::io::{self, AsyncReadExt, Cursor};

let mut reader = Cursor::new([1, 2, 3, 4]);
let mut output = [0u8; 5];

let result = reader.read_exact(&mut output).await;

assert_eq!(result.unwrap_err().kind(), io::ErrorKind::UnexpectedEof);
source

fn read_to_end<'a>(&'a mut self, buf: &'a mut Vec<u8>) -> ReadToEnd<'a, Self>
where Self: Unpin,

Creates a future which will read all the bytes from this AsyncRead.

On success the total number of bytes read is returned.

§Examples
use futures::io::{AsyncReadExt, Cursor};

let mut reader = Cursor::new([1, 2, 3, 4]);
let mut output = Vec::with_capacity(4);

let bytes = reader.read_to_end(&mut output).await?;

assert_eq!(bytes, 4);
assert_eq!(output, vec![1, 2, 3, 4]);
source

fn read_to_string<'a>( &'a mut self, buf: &'a mut String, ) -> ReadToString<'a, Self>
where Self: Unpin,

Creates a future which will read all the bytes from this AsyncRead.

On success the total number of bytes read is returned.

§Examples
use futures::io::{AsyncReadExt, Cursor};

let mut reader = Cursor::new(&b"1234"[..]);
let mut buffer = String::with_capacity(4);

let bytes = reader.read_to_string(&mut buffer).await?;

assert_eq!(bytes, 4);
assert_eq!(buffer, String::from("1234"));
source

fn split(self) -> (ReadHalf<Self>, WriteHalf<Self>)
where Self: Sized + AsyncWrite,

Helper method for splitting this read/write object into two halves.

The two halves returned implement the AsyncRead and AsyncWrite traits, respectively.

§Examples
use futures::io::{self, AsyncReadExt, Cursor};

// Note that for `Cursor` the read and write halves share a single
// seek position. This may or may not be true for other types that
// implement both `AsyncRead` and `AsyncWrite`.

let reader = Cursor::new([1, 2, 3, 4]);
let mut buffer = Cursor::new(vec![0, 0, 0, 0, 5, 6, 7, 8]);
let mut writer = Cursor::new(vec![0u8; 5]);

{
    let (buffer_reader, mut buffer_writer) = (&mut buffer).split();
    io::copy(reader, &mut buffer_writer).await?;
    io::copy(buffer_reader, &mut writer).await?;
}

assert_eq!(buffer.into_inner(), [1, 2, 3, 4, 5, 6, 7, 8]);
assert_eq!(writer.into_inner(), [5, 6, 7, 8, 0]);
source

fn take(self, limit: u64) -> Take<Self>
where Self: Sized,

Creates an AsyncRead adapter which will read at most limit bytes from the underlying reader.

§Examples
use futures::io::{AsyncReadExt, Cursor};

let reader = Cursor::new(&b"12345678"[..]);
let mut buffer = [0; 5];

let mut take = reader.take(4);
let n = take.read(&mut buffer).await?;

assert_eq!(n, 4);
assert_eq!(&buffer, b"1234\0");
source

fn compat(self) -> Compat<Self>
where Self: Sized + Unpin,

Wraps an AsyncRead in a compatibility wrapper that allows it to be used as a futures 0.1 / tokio-io 0.1 AsyncRead. If the wrapped type implements AsyncWrite as well, the result will also implement the futures 0.1 / tokio 0.1 AsyncWrite trait.

Requires the io-compat feature to enable.

Object Safety§

This trait is not object safe.

Implementors§

source§

impl<R> AsyncReadExt for R
where R: AsyncRead + ?Sized,