1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
//! # fuel_indexer_lib::parser
//!
//! A utility used to help parse and cache various components of indexer
//! GraphQL schema. This is meant to be a productivity tool for project devs.
use crate::{
fully_qualified_namespace,
graphql::{
extract_foreign_key_info, field_id, field_type_name, is_list_type,
list_field_type_name, GraphQLSchema, GraphQLSchemaValidator, BASE_SCHEMA,
},
ExecutionSource,
};
use async_graphql_parser::{
parse_schema,
types::{
FieldDefinition, ObjectType, ServiceDocument, TypeDefinition, TypeKind,
TypeSystemDefinition,
},
};
use std::collections::{BTreeMap, HashMap, HashSet};
use thiserror::Error;
/// Result type returned by parsing GraphQL schema.
pub type ParsedResult<T> = Result<T, ParsedError>;
/// Error type returned by parsing GraphQL schema.
#[derive(Error, Debug)]
pub enum ParsedError {
#[error("Generic error")]
Generic,
#[error("GraphQL parser error: {0:?}")]
ParseError(#[from] async_graphql_parser::Error),
#[error("This TypeKind is unsupported.")]
UnsupportedTypeKind,
#[error("List types are unsupported.")]
ListTypesUnsupported,
#[error("Inconsistent use of virtual union types. {0:?}")]
InconsistentVirtualUnion(String),
}
/// Represents metadata related to a many-to-many relationship in the GraphQL schema.
#[derive(Debug, Clone)]
pub struct JoinTableMeta {
/// Name of the join table
pub table_name: String,
/// `TypeDefinition` name on which join relationship was found.
pub local_table_name: String,
/// Name of local column on which to join.
///
/// This is always `id` for now.
pub column_name: String,
/// Type of the column on the local table on which to join.
///
/// This is always `ColumnType::UInt8` for now.
pub column_type: String,
/// `TypeDefinition` name to which this join references.
pub ref_table_name: String,
/// Name of the column on the referenced table on which to join.
///
/// This is always `id` for now.
pub ref_column_name: String,
/// Type of the column on the referenced table on which to join.
///
/// This is always `ColumnType::UInt8` for now.
pub ref_column_type: String,
}
impl JoinTableMeta {
/// Create a new `JoinTableMeta`.
pub fn new(local_table_name: &str, ref_table_name: &str) -> Self {
let local_table_name = local_table_name.to_string().to_lowercase();
let ref_table_name = ref_table_name.to_string().to_lowercase();
Self {
table_name: format!("{local_table_name}s_{ref_table_name}s"),
local_table_name,
column_name: "id".to_string(),
column_type: "ID".to_string(),
ref_table_name,
ref_column_name: "id".to_string(),
ref_column_type: "ID".to_string(),
}
}
}
/// Given a GraphQL document, return a two `HashSet`s - one for each
/// unique field type, and one for each unique directive.
pub fn build_schema_types_set(
ast: &ServiceDocument,
) -> (HashSet<String>, HashSet<String>) {
let types: HashSet<String> = ast
.definitions
.iter()
.filter_map(|def| {
if let TypeSystemDefinition::Type(typ) = def {
Some(&typ.node)
} else {
None
}
})
.map(|t| t.name.to_string())
.collect();
let directives = ast
.definitions
.iter()
.filter_map(|def| {
if let TypeSystemDefinition::Directive(dir) = def {
Some(dir.node.name.to_string())
} else {
None
}
})
.collect();
(types, directives)
}
/// A wrapper object used to encapsulate a lot of the boilerplate logic related
/// to parsing schema, creating mappings of types, fields, objects, etc.
//
// Ideally `ParsedGraphQLSchema` prevents from having to manually parse `async_graphql_parser`
// `TypeDefinition`s in order to get metadata on the types (e.g., Is a foreign key? is a virtual type?
// and so on).
#[derive(Debug, Clone)]
pub struct ParsedGraphQLSchema {
/// Namespace of the indexer.
namespace: String,
/// Identifier of the indexer.
identifier: String,
/// Indexer method of execution.
exec_source: ExecutionSource,
/// All unique names of types in the schema (whether objects, enums, or scalars).
type_names: HashSet<String>,
/// Mapping of lowercase `TypeDefinition` names to their actual `TypeDefinition` names.
// Used to refer to top-level entities in GraphQL queries.
typedef_names_to_types: HashMap<String, String>,
/// Mapping of object names to objects.
objects: HashMap<String, ObjectType>,
/// Mapping of union names to unions.
unions: HashMap<String, TypeDefinition>,
/// All unique names of enums in the schema.
enum_names: HashSet<String>,
/// All unique names of union types in the schema.
union_names: HashSet<String>,
/// All objects and their field names and types, indexed by object name.
object_field_mappings: HashMap<String, BTreeMap<String, String>>,
/// All unique names of types for which tables should _not_ be created.
virtual_type_names: HashSet<String>,
/// All unique names of types that have already been parsed.
parsed_typedef_names: HashSet<String>,
/// Mapping of fully qualified field names to their field types.
field_type_mappings: HashMap<String, String>,
/// All unique names of scalar types in the schema.
scalar_names: HashSet<String>,
/// A mapping of fully qualified field names to their respective optionalities.
field_type_optionality: HashMap<String, bool>,
/// The parsed schema AST.
ast: ServiceDocument,
/// Mapping of fully qualified field names to their `FieldDefinition` and `TypeDefinition` name.
//
// We keep the `TypeDefinition` name so that we can know what type of object the field belongs to.
field_defs: HashMap<String, (FieldDefinition, String)>,
/// Raw GraphQL schema content.
schema: GraphQLSchema,
/// All unique names of foreign key types in the schema.
foreign_key_mappings: HashMap<String, HashMap<String, (String, String)>>,
/// All type definitions in the schema.
type_defs: HashMap<String, TypeDefinition>,
/// `FieldDefinition` names in the GraphQL that are a `List` type.
list_field_types: HashSet<String>,
/// `TypeDefinition`s that contain a `FieldDefinition` which is a `List` type.
list_type_defs: HashMap<String, TypeDefinition>,
/// Metadata related to many-to-many relationships in the GraphQL schema.
///
/// Many-to-many (m2m) relationships are created when a `FieldDefinition` contains a
/// list type, whose inner content type is a foreign key reference to another `TypeDefinition`.
join_table_meta: HashMap<String, JoinTableMeta>,
}
impl Default for ParsedGraphQLSchema {
fn default() -> Self {
let ast = parse_schema(BASE_SCHEMA)
.map_err(ParsedError::ParseError)
.expect("Bad schema");
Self {
namespace: "".to_string(),
identifier: "".to_string(),
exec_source: ExecutionSource::Wasm,
type_names: HashSet::new(),
typedef_names_to_types: HashMap::new(),
enum_names: HashSet::new(),
union_names: HashSet::new(),
objects: HashMap::new(),
virtual_type_names: HashSet::new(),
parsed_typedef_names: HashSet::new(),
field_type_mappings: HashMap::new(),
object_field_mappings: HashMap::new(),
scalar_names: HashSet::new(),
field_defs: HashMap::new(),
field_type_optionality: HashMap::new(),
foreign_key_mappings: HashMap::new(),
type_defs: HashMap::new(),
ast,
schema: GraphQLSchema::default(),
list_field_types: HashSet::new(),
list_type_defs: HashMap::new(),
unions: HashMap::new(),
join_table_meta: HashMap::new(),
}
}
}
impl ParsedGraphQLSchema {
/// Create a new ParsedGraphQLSchema.
pub fn new(
namespace: &str,
identifier: &str,
exec_source: ExecutionSource,
schema: Option<&GraphQLSchema>,
) -> ParsedResult<Self> {
let mut ast = parse_schema(BASE_SCHEMA).map_err(ParsedError::ParseError)?;
let mut type_names = HashSet::new();
let (scalar_names, _) = build_schema_types_set(&ast);
type_names.extend(scalar_names.clone());
let mut object_field_mappings = HashMap::new();
let mut parsed_typedef_names = HashSet::new();
let mut enum_names = HashSet::new();
let mut union_names = HashSet::new();
let mut virtual_type_names = HashSet::new();
let mut field_type_mappings = HashMap::new();
let mut objects = HashMap::new();
let mut field_defs = HashMap::new();
let mut field_type_optionality = HashMap::new();
let mut foreign_key_mappings: HashMap<String, HashMap<String, (String, String)>> =
HashMap::new();
let mut type_defs = HashMap::new();
let mut list_field_types = HashSet::new();
let mut list_type_defs = HashMap::new();
let mut unions = HashMap::new();
let mut join_table_meta = HashMap::new();
// Parse _everything_ in the GraphQL schema
if let Some(schema) = schema {
ast = parse_schema(schema.schema()).map_err(ParsedError::ParseError)?;
let (other_type_names, _) = build_schema_types_set(&ast);
type_names.extend(other_type_names);
for def in ast.definitions.iter() {
if let TypeSystemDefinition::Type(t) = def {
match &t.node.kind {
TypeKind::Object(o) => {
let obj_name = t.node.name.to_string();
type_defs.insert(obj_name.clone(), t.node.clone());
objects.insert(obj_name.clone(), o.clone());
parsed_typedef_names.insert(t.node.name.to_string());
let mut field_mapping = BTreeMap::new();
for field in &o.fields {
let field_name = field.node.name.to_string();
let field_typ_name = field.node.ty.to_string();
let fid = field_id(&obj_name, &field_name);
if is_list_type(&field.node) {
list_field_types
.insert(field_typ_name.replace('!', ""));
list_type_defs
.insert(obj_name.clone(), t.node.clone());
}
let is_virtual = field
.node
.directives
.iter()
.any(|d| d.node.name.to_string() == "virtual");
if is_virtual {
virtual_type_names.insert(obj_name.clone());
}
// Manual version of `ParsedGraphQLSchema::is_possible_foreign_key`
let ftype = field_type_name(&field.node);
if parsed_typedef_names
.contains(&field_type_name(&field.node))
&& !scalar_names.contains(&ftype)
&& !enum_names.contains(&ftype)
&& !virtual_type_names.contains(&ftype)
{
let (_ref_coltype, ref_colname, ref_tablename) =
extract_foreign_key_info(
&field.node,
&field_type_mappings,
);
join_table_meta.insert(
obj_name.clone(),
JoinTableMeta::new(&obj_name, &ref_tablename),
);
let fk = foreign_key_mappings
.get_mut(&t.node.name.to_string().to_lowercase());
match fk {
Some(fks_for_field) => {
fks_for_field.insert(
field.node.name.to_string(),
(
field_type_name(&field.node)
.to_lowercase(),
ref_colname.clone(),
),
);
}
None => {
let fks_for_field = HashMap::from([(
field.node.name.to_string(),
(
field_type_name(&field.node)
.to_lowercase(),
ref_colname.clone(),
),
)]);
foreign_key_mappings.insert(
t.node.name.to_string().to_lowercase(),
fks_for_field,
);
}
}
}
let field_typ_name = field_type_name(&field.node);
parsed_typedef_names.insert(field_name.clone());
field_mapping.insert(field_name, field_typ_name.clone());
field_type_optionality
.insert(fid.clone(), field.node.ty.node.nullable);
field_type_mappings.insert(fid.clone(), field_typ_name);
field_defs
.insert(fid, (field.node.clone(), obj_name.clone()));
}
object_field_mappings.insert(obj_name, field_mapping);
}
TypeKind::Enum(e) => {
let name = t.node.name.to_string();
type_defs.insert(name.clone(), t.node.clone());
virtual_type_names.insert(name.clone());
enum_names.insert(name.clone());
for val in &e.values {
let val_name = &val.node.value.to_string();
let val_id = format!("{}.{val_name}", name.clone());
object_field_mappings
.entry(name.clone())
.or_insert_with(BTreeMap::new)
.insert(val_name.to_string(), name.clone());
field_type_mappings.insert(val_id, name.to_string());
}
}
TypeKind::Union(u) => {
let union_name = t.node.name.to_string();
parsed_typedef_names.insert(union_name.clone());
type_defs.insert(union_name.clone(), t.node.clone());
unions.insert(union_name.clone(), t.node.clone());
union_names.insert(union_name.clone());
GraphQLSchemaValidator::check_derived_union_is_well_formed(
&t.node,
&mut virtual_type_names,
);
u.members.iter().for_each(|m| {
let member_name = m.node.to_string();
if let Some(name) = virtual_type_names.get(&member_name) {
virtual_type_names.insert(name.to_owned());
}
});
// These member fields are already cached under their respective object names, but
// we also need to cache them under this derived union name.
u.members.iter().for_each(|m| {
let member_name = m.node.to_string();
let member_obj = objects.get(&member_name).unwrap();
member_obj.fields.iter().for_each(|f| {
let fid =
field_id(&union_name, &f.node.name.to_string());
field_defs.insert(
fid.clone(),
(f.node.clone(), member_name.clone()),
);
field_type_mappings
.insert(fid.clone(), field_type_name(&f.node));
object_field_mappings
.entry(union_name.clone())
.or_insert_with(BTreeMap::new)
.insert(
f.node.name.to_string(),
field_type_name(&f.node),
);
field_type_optionality
.insert(fid, f.node.ty.node.nullable);
});
});
}
_ => {
return Err(ParsedError::UnsupportedTypeKind);
}
}
}
}
}
let typedef_names_to_types = type_defs
.iter()
.filter(|(_, t)| !matches!(&t.kind, TypeKind::Enum(_)))
.collect::<Vec<(&String, &TypeDefinition)>>()
.into_iter()
.fold(HashMap::new(), |mut acc, (k, _)| {
acc.insert(k.to_lowercase(), k.clone());
acc
});
Ok(Self {
namespace: namespace.to_string(),
identifier: identifier.to_string(),
exec_source,
type_names,
union_names,
objects,
field_defs,
foreign_key_mappings,
object_field_mappings,
enum_names,
virtual_type_names,
parsed_typedef_names,
field_type_mappings,
scalar_names,
field_type_optionality,
schema: schema.cloned().unwrap(),
ast,
type_defs,
list_field_types,
list_type_defs,
unions,
join_table_meta,
typedef_names_to_types,
})
}
/// Namespace of the indexer.
pub fn namespace(&self) -> &str {
&self.namespace
}
/// Identifier of the indexer.
pub fn identifier(&self) -> &str {
&self.identifier
}
/// Indexer method of execution.
pub fn exec_source(&self) -> &ExecutionSource {
&self.exec_source
}
/// Mapping of object names to objects.
pub fn objects(&self) -> &HashMap<String, ObjectType> {
&self.objects
}
/// Mapping of fully qualified field names to their field types.
pub fn field_type_mappings(&self) -> &HashMap<String, String> {
&self.field_type_mappings
}
/// A mapping of fully qualified field names to their respective optionalities.
pub fn field_type_optionality(&self) -> &HashMap<String, bool> {
&self.field_type_optionality
}
/// The parsed schema AST.
pub fn ast(&self) -> &ServiceDocument {
&self.ast
}
/// Raw GraphQL schema content.
pub fn schema(&self) -> &GraphQLSchema {
&self.schema
}
/// All type definitions in the schema.
pub fn type_defs(&self) -> &HashMap<String, TypeDefinition> {
&self.type_defs
}
/// Mapping of fully qualified field names to their `FieldDefinition` and `TypeDefinition` name.
pub fn field_defs(&self) -> &HashMap<String, (FieldDefinition, String)> {
&self.field_defs
}
/// All unique names of foreign key types in the schema.
pub fn foreign_key_mappings(
&self,
) -> &HashMap<String, HashMap<String, (String, String)>> {
&self.foreign_key_mappings
}
/// All objects and their field names and types, indexed by object name.
pub fn object_field_mappings(&self) -> &HashMap<String, BTreeMap<String, String>> {
&self.object_field_mappings
}
/// Metadata related to many-to-many relationships in the GraphQL schema.
pub fn join_table_meta(&self) -> &HashMap<String, JoinTableMeta> {
&self.join_table_meta
}
/// Return the base scalar type for a given `FieldDefinition`.
pub fn scalar_type_for(&self, f: &FieldDefinition) -> String {
let typ_name = list_field_type_name(f);
if self.is_list_field_type(&typ_name) {
let typ_name = field_type_name(f);
if self.is_possible_foreign_key(&typ_name) {
let (ref_coltype, _ref_colname, _ref_tablename) =
extract_foreign_key_info(f, &self.field_type_mappings);
return ref_coltype;
} else if self.is_virtual_typedef(&typ_name) {
return "Virtual".to_string();
} else if self.is_enum_typedef(&typ_name) {
return "Charfield".to_string();
} else {
return typ_name;
}
}
if self.is_possible_foreign_key(&typ_name) {
let (ref_coltype, _ref_colname, _ref_tablename) =
extract_foreign_key_info(f, &self.field_type_mappings);
return ref_coltype;
}
if self.is_virtual_typedef(&typ_name) {
return "Virtual".to_string();
}
if self.is_enum_typedef(&typ_name) {
return "Charfield".to_string();
}
typ_name
}
/// Return the `TypeDefinition` associated with a given union name.
pub fn get_union(&self, name: &str) -> Option<&TypeDefinition> {
self.unions.get(name)
}
/// Return a list of all non-enum type definitions.
pub fn non_enum_typdefs(&self) -> Vec<(&String, &TypeDefinition)> {
self.type_defs
.iter()
.filter(|(_, t)| !matches!(&t.kind, TypeKind::Enum(_)))
.collect()
}
/// Whether the given field type name is a possible foreign key.
pub fn is_possible_foreign_key(&self, name: &str) -> bool {
self.parsed_typedef_names.contains(name)
&& !self.scalar_names.contains(name)
&& !self.is_enum_typedef(name)
&& !self.is_virtual_typedef(name)
}
/// Whether the given field type name is a type from which tables are not created.
pub fn is_virtual_typedef(&self, name: &str) -> bool {
self.virtual_type_names.contains(name) && !self.is_enum_typedef(name)
}
/// Whether the given field type name is an enum type.
pub fn is_enum_typedef(&self, name: &str) -> bool {
self.enum_names.contains(name)
}
/// Whether the given field type name is a list type.
pub fn is_list_field_type(&self, name: &str) -> bool {
self.list_field_types.contains(name)
}
/// Whether a given `TypeDefinition` contains a field that is a list type.
pub fn is_list_typedef(&self, name: &str) -> bool {
self.list_type_defs.contains_key(name)
}
/// Whether the given field type name is a union type.
pub fn is_union_typedef(&self, name: &str) -> bool {
self.union_names.contains(name)
}
/// Return the GraphQL type for a given `FieldDefinition` name.
fn field_type(&self, cond: &str, name: &str) -> Option<&String> {
match self.object_field_mappings().get(cond) {
Some(fieldset) => fieldset.get(name),
_ => {
let tablename = cond.replace(['[', ']', '!'], "");
match self.object_field_mappings().get(&tablename) {
Some(fieldset) => fieldset.get(name),
_ => None,
}
}
}
}
/// Return the GraphQL type for a given `TypeDefinition` name.
fn typedef_type(&self, name: &str) -> Option<&String> {
self.typedef_names_to_types.get(name)
}
/// Return the GraphQL type for a given `FieldDefinition` or `TypeDefinition` name.
// This serves as a convenience function so that the caller doesn't have to
// worry about handling the case in which `cond` is not present; for example,
// `cond` is None when retrieving the type for a top-level entity in a query.
pub fn graphql_type(&self, cond: Option<&String>, name: &str) -> Option<&String> {
match cond {
Some(c) => self.field_type(c, name),
None => self.typedef_type(name),
}
}
/// Ensure the given type is included in this `Schema`'s types
pub fn has_type(&self, name: &str) -> bool {
self.type_names.contains(name)
}
/// Fully qualified GraphQL namespace for indexer.
pub fn fully_qualified_namespace(&self) -> String {
fully_qualified_namespace(&self.namespace, &self.identifier)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_parser_caches_all_related_typedefs_when_instantiated() {
let schema = r#"
enum AccountLabel {
PRIMARY
SECONDARY
}
type Account {
id: ID!
address: Address!
label: AccountLabel
}
type User {
id: ID!
account: Account!
username: Charfield!
}
type Loser {
id: ID!
account: Account!
age: UInt8!
}
type Metadata {
count: UInt8! @virtual
}
union Person = User | Loser
"#;
let parsed = ParsedGraphQLSchema::new(
"test",
"test",
ExecutionSource::Wasm,
Some(&GraphQLSchema::new(schema.to_string())),
);
assert!(parsed.is_ok());
let parsed = parsed.unwrap();
assert!(parsed.has_type("Account"));
assert!(parsed.has_type("User"));
assert!(parsed.is_possible_foreign_key("Account"));
assert!(parsed.is_virtual_typedef("Metadata"));
assert!(parsed.is_enum_typedef("AccountLabel"));
assert!(parsed
.field_type_optionality()
.contains_key("Account.label"));
assert!(parsed.is_union_typedef("Person"));
}
}