Trait frame_support::storage::StorageDecodeLength
source · pub trait StorageDecodeLength: Sealed + DecodeLength {
fn decode_len(key: &[u8]) -> Option<usize> { ... }
}
Expand description
Marker trait that will be implemented for types that support to decode their length in an
efficient way. It is expected that the length is at the beginning of the encoded object
and that the length is a Compact<u32>
.
This trait is sealed.
Provided Methods§
sourcefn decode_len(key: &[u8]) -> Option<usize>
fn decode_len(key: &[u8]) -> Option<usize>
Decode the length of the storage value at key
.
This function assumes that the length is at the beginning of the encoded object
and is a Compact<u32>
.
Returns None
if the storage value does not exist or the decoding failed.
Examples found in repository?
src/storage/mod.rs (line 153)
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
fn decode_len() -> Option<usize>
where
T: StorageDecodeLength,
{
T::decode_len(&Self::hashed_key())
}
}
/// A strongly-typed map in storage.
///
/// Details on implementation can be found at [`generator::StorageMap`].
pub trait StorageMap<K: FullEncode, V: FullCodec> {
/// The type that get/take return.
type Query;
/// Get the storage key used to fetch a value corresponding to a specific key.
fn hashed_key_for<KeyArg: EncodeLike<K>>(key: KeyArg) -> Vec<u8>;
/// Does the value (explicitly) exist in storage?
fn contains_key<KeyArg: EncodeLike<K>>(key: KeyArg) -> bool;
/// Load the value associated with the given key from the map.
fn get<KeyArg: EncodeLike<K>>(key: KeyArg) -> Self::Query;
/// Store or remove the value to be associated with `key` so that `get` returns the `query`.
fn set<KeyArg: EncodeLike<K>>(key: KeyArg, query: Self::Query);
/// Try to get the value for the given key from the map.
///
/// Returns `Ok` if it exists, `Err` if not.
fn try_get<KeyArg: EncodeLike<K>>(key: KeyArg) -> Result<V, ()>;
/// Swap the values of two keys.
fn swap<KeyArg1: EncodeLike<K>, KeyArg2: EncodeLike<K>>(key1: KeyArg1, key2: KeyArg2);
/// Store a value to be associated with the given key from the map.
fn insert<KeyArg: EncodeLike<K>, ValArg: EncodeLike<V>>(key: KeyArg, val: ValArg);
/// Remove the value under a key.
fn remove<KeyArg: EncodeLike<K>>(key: KeyArg);
/// Mutate the value under a key.
fn mutate<KeyArg: EncodeLike<K>, R, F: FnOnce(&mut Self::Query) -> R>(key: KeyArg, f: F) -> R;
/// Mutate the item, only if an `Ok` value is returned.
fn try_mutate<KeyArg: EncodeLike<K>, R, E, F: FnOnce(&mut Self::Query) -> Result<R, E>>(
key: KeyArg,
f: F,
) -> Result<R, E>;
/// Mutate the value under a key.
///
/// Deletes the item if mutated to a `None`.
fn mutate_exists<KeyArg: EncodeLike<K>, R, F: FnOnce(&mut Option<V>) -> R>(
key: KeyArg,
f: F,
) -> R;
/// Mutate the item, only if an `Ok` value is returned. Deletes the item if mutated to a `None`.
/// `f` will always be called with an option representing if the storage item exists (`Some<V>`)
/// or if the storage item does not exist (`None`), independent of the `QueryType`.
fn try_mutate_exists<KeyArg: EncodeLike<K>, R, E, F: FnOnce(&mut Option<V>) -> Result<R, E>>(
key: KeyArg,
f: F,
) -> Result<R, E>;
/// Take the value under a key.
fn take<KeyArg: EncodeLike<K>>(key: KeyArg) -> Self::Query;
/// Append the given items to the value in the storage.
///
/// `V` is required to implement `codec::EncodeAppend`.
///
/// # Warning
///
/// If the storage item is not encoded properly, the storage will be overwritten
/// and set to `[item]`. Any default value set for the storage item will be ignored
/// on overwrite.
fn append<Item, EncodeLikeItem, EncodeLikeKey>(key: EncodeLikeKey, item: EncodeLikeItem)
where
EncodeLikeKey: EncodeLike<K>,
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
V: StorageAppend<Item>;
/// Read the length of the storage value without decoding the entire value under the
/// given `key`.
///
/// `V` is required to implement [`StorageDecodeLength`].
///
/// If the value does not exists or it fails to decode the length, `None` is returned.
/// Otherwise `Some(len)` is returned.
///
/// # Warning
///
/// `None` does not mean that `get()` does not return a value. The default value is completly
/// ignored by this function.
fn decode_len<KeyArg: EncodeLike<K>>(key: KeyArg) -> Option<usize>
where
V: StorageDecodeLength,
{
V::decode_len(&Self::hashed_key_for(key))
}
/// Migrate an item with the given `key` from a defunct `OldHasher` to the current hasher.
///
/// If the key doesn't exist, then it's a no-op. If it does, then it returns its value.
fn migrate_key<OldHasher: StorageHasher, KeyArg: EncodeLike<K>>(key: KeyArg) -> Option<V>;
/// Migrate an item with the given `key` from a `blake2_256` hasher to the current hasher.
///
/// If the key doesn't exist, then it's a no-op. If it does, then it returns its value.
fn migrate_key_from_blake<KeyArg: EncodeLike<K>>(key: KeyArg) -> Option<V> {
Self::migrate_key::<crate::hash::Blake2_256, KeyArg>(key)
}
}
/// A strongly-typed map in storage whose keys and values can be iterated over.
pub trait IterableStorageMap<K: FullEncode, V: FullCodec>: StorageMap<K, V> {
/// The type that iterates over all `(key, value)`.
type Iterator: Iterator<Item = (K, V)>;
/// The type that itereates over all `key`s.
type KeyIterator: Iterator<Item = K>;
/// Enumerate all elements in the map in lexicographical order of the encoded key. If you
/// alter the map while doing this, you'll get undefined results.
fn iter() -> Self::Iterator;
/// Enumerate all elements in the map after a specified `starting_raw_key` in lexicographical
/// order of the encoded key. If you alter the map while doing this, you'll get undefined
/// results.
fn iter_from(starting_raw_key: Vec<u8>) -> Self::Iterator;
/// Enumerate all keys in the map in lexicographical order of the encoded key, skipping over
/// the elements. If you alter the map while doing this, you'll get undefined results.
fn iter_keys() -> Self::KeyIterator;
/// Enumerate all keys in the map after a specified `starting_raw_key` in lexicographical order
/// of the encoded key. If you alter the map while doing this, you'll get undefined results.
fn iter_keys_from(starting_raw_key: Vec<u8>) -> Self::KeyIterator;
/// Remove all elements from the map and iterate through them in lexicographical order of the
/// encoded key. If you add elements to the map while doing this, you'll get undefined results.
fn drain() -> Self::Iterator;
/// Translate the values of all elements by a function `f`, in the map in lexicographical order
/// of the encoded key.
/// By returning `None` from `f` for an element, you'll remove it from the map.
///
/// NOTE: If a value fail to decode because storage is corrupted then it is skipped.
fn translate<O: Decode, F: FnMut(K, O) -> Option<V>>(f: F);
}
/// A strongly-typed double map in storage whose secondary keys and values can be iterated over.
pub trait IterableStorageDoubleMap<K1: FullCodec, K2: FullCodec, V: FullCodec>:
StorageDoubleMap<K1, K2, V>
{
/// The type that iterates over all `key2`.
type PartialKeyIterator: Iterator<Item = K2>;
/// The type that iterates over all `(key2, value)`.
type PrefixIterator: Iterator<Item = (K2, V)>;
/// The type that iterates over all `(key1, key2)`.
type FullKeyIterator: Iterator<Item = (K1, K2)>;
/// The type that iterates over all `(key1, key2, value)`.
type Iterator: Iterator<Item = (K1, K2, V)>;
/// Enumerate all elements in the map with first key `k1` in lexicographical order of the
/// encoded key. If you add or remove values whose first key is `k1` to the map while doing
/// this, you'll get undefined results.
fn iter_prefix(k1: impl EncodeLike<K1>) -> Self::PrefixIterator;
/// Enumerate all elements in the map with first key `k1` after a specified `starting_raw_key`
/// in lexicographical order of the encoded key. If you add or remove values whose first key is
/// `k1` to the map while doing this, you'll get undefined results.
fn iter_prefix_from(k1: impl EncodeLike<K1>, starting_raw_key: Vec<u8>)
-> Self::PrefixIterator;
/// Enumerate all second keys `k2` in the map with the same first key `k1` in lexicographical
/// order of the encoded key. If you add or remove values whose first key is `k1` to the map
/// while doing this, you'll get undefined results.
fn iter_key_prefix(k1: impl EncodeLike<K1>) -> Self::PartialKeyIterator;
/// Enumerate all second keys `k2` in the map with the same first key `k1` after a specified
/// `starting_raw_key` in lexicographical order of the encoded key. If you add or remove values
/// whose first key is `k1` to the map while doing this, you'll get undefined results.
fn iter_key_prefix_from(
k1: impl EncodeLike<K1>,
starting_raw_key: Vec<u8>,
) -> Self::PartialKeyIterator;
/// Remove all elements from the map with first key `k1` and iterate through them in
/// lexicographical order of the encoded key. If you add elements with first key `k1` to the
/// map while doing this, you'll get undefined results.
fn drain_prefix(k1: impl EncodeLike<K1>) -> Self::PrefixIterator;
/// Enumerate all elements in the map in lexicographical order of the encoded key. If you add
/// or remove values to the map while doing this, you'll get undefined results.
fn iter() -> Self::Iterator;
/// Enumerate all elements in the map after a specified `starting_raw_key` in lexicographical
/// order of the encoded key. If you add or remove values to the map while doing this, you'll
/// get undefined results.
fn iter_from(starting_raw_key: Vec<u8>) -> Self::Iterator;
/// Enumerate all keys `k1` and `k2` in the map in lexicographical order of the encoded key. If
/// you add or remove values to the map while doing this, you'll get undefined results.
fn iter_keys() -> Self::FullKeyIterator;
/// Enumerate all keys `k1` and `k2` in the map after a specified `starting_raw_key` in
/// lexicographical order of the encoded key. If you add or remove values to the map while
/// doing this, you'll get undefined results.
fn iter_keys_from(starting_raw_key: Vec<u8>) -> Self::FullKeyIterator;
/// Remove all elements from the map and iterate through them in lexicographical order of the
/// encoded key. If you add elements to the map while doing this, you'll get undefined results.
fn drain() -> Self::Iterator;
/// Translate the values of all elements by a function `f`, in the map in lexicographical order
/// of the encoded key.
/// By returning `None` from `f` for an element, you'll remove it from the map.
///
/// NOTE: If a value fail to decode because storage is corrupted then it is skipped.
fn translate<O: Decode, F: FnMut(K1, K2, O) -> Option<V>>(f: F);
}
/// A strongly-typed map with arbitrary number of keys in storage whose keys and values can be
/// iterated over.
pub trait IterableStorageNMap<K: ReversibleKeyGenerator, V: FullCodec>: StorageNMap<K, V> {
/// The type that iterates over all `(key1, key2, key3, ... keyN)` tuples.
type KeyIterator: Iterator<Item = K::Key>;
/// The type that iterates over all `(key1, key2, key3, ... keyN), value)` tuples.
type Iterator: Iterator<Item = (K::Key, V)>;
/// Enumerate all elements in the map with prefix key `kp` in lexicographical order of the
/// encoded key. If you add or remove values whose prefix is `kp` to the map while doing this,
/// you'll get undefined results.
fn iter_prefix<KP>(kp: KP) -> PrefixIterator<(<K as HasKeyPrefix<KP>>::Suffix, V)>
where
K: HasReversibleKeyPrefix<KP>;
/// Enumerate all elements in the map with prefix key `kp` after a specified `starting_raw_key`
/// in lexicographical order of the encoded key. If you add or remove values whose prefix is
/// `kp` to the map while doing this, you'll get undefined results.
fn iter_prefix_from<KP>(
kp: KP,
starting_raw_key: Vec<u8>,
) -> PrefixIterator<(<K as HasKeyPrefix<KP>>::Suffix, V)>
where
K: HasReversibleKeyPrefix<KP>;
/// Enumerate all suffix keys in the map with prefix key `kp` in lexicographical order of the
/// encoded key. If you add or remove values whose prefix is `kp` to the map while doing this,
/// you'll get undefined results.
fn iter_key_prefix<KP>(kp: KP) -> KeyPrefixIterator<<K as HasKeyPrefix<KP>>::Suffix>
where
K: HasReversibleKeyPrefix<KP>;
/// Enumerate all suffix keys in the map with prefix key `kp` after a specified
/// `starting_raw_key` in lexicographical order of the encoded key. If you add or remove values
/// whose prefix is `kp` to the map while doing this, you'll get undefined results.
fn iter_key_prefix_from<KP>(
kp: KP,
starting_raw_key: Vec<u8>,
) -> KeyPrefixIterator<<K as HasKeyPrefix<KP>>::Suffix>
where
K: HasReversibleKeyPrefix<KP>;
/// Remove all elements from the map with prefix key `kp` and iterate through them in
/// lexicographical order of the encoded key. If you add elements with prefix key `kp` to the
/// map while doing this, you'll get undefined results.
fn drain_prefix<KP>(kp: KP) -> PrefixIterator<(<K as HasKeyPrefix<KP>>::Suffix, V)>
where
K: HasReversibleKeyPrefix<KP>;
/// Enumerate all elements in the map in lexicographical order of the encoded key. If you add
/// or remove values to the map while doing this, you'll get undefined results.
fn iter() -> Self::Iterator;
/// Enumerate all elements in the map after a specified `starting_raw_key` in lexicographical
/// order of the encoded key. If you add or remove values to the map while doing this, you'll
/// get undefined results.
fn iter_from(starting_raw_key: Vec<u8>) -> Self::Iterator;
/// Enumerate all keys in the map in lexicographical order of the encoded key. If you add or
/// remove values to the map while doing this, you'll get undefined results.
fn iter_keys() -> Self::KeyIterator;
/// Enumerate all keys in the map after `starting_raw_key` in lexicographical order of the
/// encoded key. If you add or remove values to the map while doing this, you'll get undefined
/// results.
fn iter_keys_from(starting_raw_key: Vec<u8>) -> Self::KeyIterator;
/// Remove all elements from the map and iterate through them in lexicographical order of the
/// encoded key. If you add elements to the map while doing this, you'll get undefined results.
fn drain() -> Self::Iterator;
/// Translate the values of all elements by a function `f`, in the map in lexicographical order
/// of the encoded key.
/// By returning `None` from `f` for an element, you'll remove it from the map.
///
/// NOTE: If a value fail to decode because storage is corrupted then it is skipped.
fn translate<O: Decode, F: FnMut(K::Key, O) -> Option<V>>(f: F);
}
/// An implementation of a map with a two keys.
///
/// Details on implementation can be found at [`generator::StorageDoubleMap`].
pub trait StorageDoubleMap<K1: FullEncode, K2: FullEncode, V: FullCodec> {
/// The type that get/take returns.
type Query;
/// Get the storage key used to fetch a value corresponding to a specific key.
fn hashed_key_for<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Vec<u8>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Does the value (explicitly) exist in storage?
fn contains_key<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> bool
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Load the value associated with the given key from the double map.
fn get<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Self::Query
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Try to get the value for the given key from the double map.
///
/// Returns `Ok` if it exists, `Err` if not.
fn try_get<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Result<V, ()>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Store or remove the value to be associated with `key` so that `get` returns the `query`.
fn set<KArg1: EncodeLike<K1>, KArg2: EncodeLike<K2>>(k1: KArg1, k2: KArg2, query: Self::Query);
/// Take a value from storage, removing it afterwards.
fn take<KArg1, KArg2>(k1: KArg1, k2: KArg2) -> Self::Query
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Swap the values of two key-pairs.
fn swap<XKArg1, XKArg2, YKArg1, YKArg2>(x_k1: XKArg1, x_k2: XKArg2, y_k1: YKArg1, y_k2: YKArg2)
where
XKArg1: EncodeLike<K1>,
XKArg2: EncodeLike<K2>,
YKArg1: EncodeLike<K1>,
YKArg2: EncodeLike<K2>;
/// Store a value to be associated with the given keys from the double map.
fn insert<KArg1, KArg2, VArg>(k1: KArg1, k2: KArg2, val: VArg)
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
VArg: EncodeLike<V>;
/// Remove the value under the given keys.
fn remove<KArg1, KArg2>(k1: KArg1, k2: KArg2)
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>;
/// Remove all values under the first key `k1` in the overlay and up to `limit` in the
/// backend.
///
/// All values in the client overlay will be deleted, if there is some `limit` then up to
/// `limit` values are deleted from the client backend, if `limit` is none then all values in
/// the client backend are deleted.
///
/// # Note
///
/// Calling this multiple times per block with a `limit` set leads always to the same keys being
/// removed and the same result being returned. This happens because the keys to delete in the
/// overlay are not taken into account when deleting keys in the backend.
#[deprecated = "Use `clear_prefix` instead"]
fn remove_prefix<KArg1>(k1: KArg1, limit: Option<u32>) -> sp_io::KillStorageResult
where
KArg1: ?Sized + EncodeLike<K1>;
/// Remove all values under the first key `k1` in the overlay and up to `maybe_limit` in the
/// backend.
///
/// All values in the client overlay will be deleted, if `maybe_limit` is `Some` then up to
/// that number of values are deleted from the client backend, otherwise all values in the
/// client backend are deleted.
///
/// ## Cursors
///
/// The `maybe_cursor` parameter should be `None` for the first call to initial removal.
/// If the resultant `maybe_cursor` is `Some`, then another call is required to complete the
/// removal operation. This value must be passed in as the subsequent call's `maybe_cursor`
/// parameter. If the resultant `maybe_cursor` is `None`, then the operation is complete and no
/// items remain in storage provided that no items were added between the first calls and the
/// final call.
fn clear_prefix<KArg1>(
k1: KArg1,
limit: u32,
maybe_cursor: Option<&[u8]>,
) -> sp_io::MultiRemovalResults
where
KArg1: ?Sized + EncodeLike<K1>;
/// Iterate over values that share the first key.
fn iter_prefix_values<KArg1>(k1: KArg1) -> PrefixIterator<V>
where
KArg1: ?Sized + EncodeLike<K1>;
/// Mutate the value under the given keys.
fn mutate<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> R
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
F: FnOnce(&mut Self::Query) -> R;
/// Mutate the value under the given keys when the closure returns `Ok`.
fn try_mutate<KArg1, KArg2, R, E, F>(k1: KArg1, k2: KArg2, f: F) -> Result<R, E>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
F: FnOnce(&mut Self::Query) -> Result<R, E>;
/// Mutate the value under the given keys. Deletes the item if mutated to a `None`.
fn mutate_exists<KArg1, KArg2, R, F>(k1: KArg1, k2: KArg2, f: F) -> R
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
F: FnOnce(&mut Option<V>) -> R;
/// Mutate the item, only if an `Ok` value is returned. Deletes the item if mutated to a `None`.
/// `f` will always be called with an option representing if the storage item exists (`Some<V>`)
/// or if the storage item does not exist (`None`), independent of the `QueryType`.
fn try_mutate_exists<KArg1, KArg2, R, E, F>(k1: KArg1, k2: KArg2, f: F) -> Result<R, E>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
F: FnOnce(&mut Option<V>) -> Result<R, E>;
/// Append the given item to the value in the storage.
///
/// `V` is required to implement [`StorageAppend`].
///
/// # Warning
///
/// If the storage item is not encoded properly, the storage will be overwritten
/// and set to `[item]`. Any default value set for the storage item will be ignored
/// on overwrite.
fn append<Item, EncodeLikeItem, KArg1, KArg2>(k1: KArg1, k2: KArg2, item: EncodeLikeItem)
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
V: StorageAppend<Item>;
/// Read the length of the storage value without decoding the entire value under the
/// given `key1` and `key2`.
///
/// `V` is required to implement [`StorageDecodeLength`].
///
/// If the value does not exists or it fails to decode the length, `None` is returned.
/// Otherwise `Some(len)` is returned.
///
/// # Warning
///
/// `None` does not mean that `get()` does not return a value. The default value is completly
/// ignored by this function.
fn decode_len<KArg1, KArg2>(key1: KArg1, key2: KArg2) -> Option<usize>
where
KArg1: EncodeLike<K1>,
KArg2: EncodeLike<K2>,
V: StorageDecodeLength,
{
V::decode_len(&Self::hashed_key_for(key1, key2))
}
/// Migrate an item with the given `key1` and `key2` from defunct `OldHasher1` and
/// `OldHasher2` to the current hashers.
///
/// If the key doesn't exist, then it's a no-op. If it does, then it returns its value.
fn migrate_keys<
OldHasher1: StorageHasher,
OldHasher2: StorageHasher,
KeyArg1: EncodeLike<K1>,
KeyArg2: EncodeLike<K2>,
>(
key1: KeyArg1,
key2: KeyArg2,
) -> Option<V>;
}
/// An implementation of a map with an arbitrary number of keys.
///
/// Details of implementation can be found at [`generator::StorageNMap`].
pub trait StorageNMap<K: KeyGenerator, V: FullCodec> {
/// The type that get/take returns.
type Query;
/// Get the storage key used to fetch a value corresponding to a specific key.
fn hashed_key_for<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Vec<u8>;
/// Does the value (explicitly) exist in storage?
fn contains_key<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> bool;
/// Load the value associated with the given key from the map.
fn get<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Self::Query;
/// Try to get the value for the given key from the map.
///
/// Returns `Ok` if it exists, `Err` if not.
fn try_get<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Result<V, ()>;
/// Store or remove the value to be associated with `key` so that `get` returns the `query`.
fn set<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg, query: Self::Query);
/// Swap the values of two keys.
fn swap<KOther, KArg1, KArg2>(key1: KArg1, key2: KArg2)
where
KOther: KeyGenerator,
KArg1: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
KArg2: EncodeLikeTuple<KOther::KArg> + TupleToEncodedIter;
/// Store a value to be associated with the given key from the map.
fn insert<KArg, VArg>(key: KArg, val: VArg)
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
VArg: EncodeLike<V>;
/// Remove the value under a key.
fn remove<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg);
/// Remove all values starting with `partial_key` in the overlay and up to `limit` in the
/// backend.
///
/// All values in the client overlay will be deleted, if there is some `limit` then up to
/// `limit` values are deleted from the client backend, if `limit` is none then all values in
/// the client backend are deleted.
///
/// # Note
///
/// Calling this multiple times per block with a `limit` set leads always to the same keys being
/// removed and the same result being returned. This happens because the keys to delete in the
/// overlay are not taken into account when deleting keys in the backend.
#[deprecated = "Use `clear_prefix` instead"]
fn remove_prefix<KP>(partial_key: KP, limit: Option<u32>) -> sp_io::KillStorageResult
where
K: HasKeyPrefix<KP>;
/// Attempt to remove items from the map matching a `partial_key` prefix.
///
/// Returns [`MultiRemovalResults`](sp_io::MultiRemovalResults) to inform about the result. Once
/// the resultant `maybe_cursor` field is `None`, then no further items remain to be deleted.
///
/// NOTE: After the initial call for any given map, it is important that no further items
/// are inserted into the map which match the `partial key`. If so, then the map may not be
/// empty when the resultant `maybe_cursor` is `None`.
///
/// # Limit
///
/// A `limit` must be provided in order to cap the maximum
/// amount of deletions done in a single call. This is one fewer than the
/// maximum number of backend iterations which may be done by this operation and as such
/// represents the maximum number of backend deletions which may happen. A `limit` of zero
/// implies that no keys will be deleted, though there may be a single iteration done.
///
/// # Cursor
///
/// A *cursor* may be passed in to this operation with `maybe_cursor`. `None` should only be
/// passed once (in the initial call) for any given storage map and `partial_key`. Subsequent
/// calls operating on the same map/`partial_key` should always pass `Some`, and this should be
/// equal to the previous call result's `maybe_cursor` field.
fn clear_prefix<KP>(
partial_key: KP,
limit: u32,
maybe_cursor: Option<&[u8]>,
) -> sp_io::MultiRemovalResults
where
K: HasKeyPrefix<KP>;
/// Iterate over values that share the partial prefix key.
fn iter_prefix_values<KP>(partial_key: KP) -> PrefixIterator<V>
where
K: HasKeyPrefix<KP>;
/// Mutate the value under a key.
fn mutate<KArg, R, F>(key: KArg, f: F) -> R
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
F: FnOnce(&mut Self::Query) -> R;
/// Mutate the item, only if an `Ok` value is returned.
fn try_mutate<KArg, R, E, F>(key: KArg, f: F) -> Result<R, E>
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
F: FnOnce(&mut Self::Query) -> Result<R, E>;
/// Mutate the value under a key.
///
/// Deletes the item if mutated to a `None`.
fn mutate_exists<KArg, R, F>(key: KArg, f: F) -> R
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
F: FnOnce(&mut Option<V>) -> R;
/// Mutate the item, only if an `Ok` value is returned. Deletes the item if mutated to a `None`.
/// `f` will always be called with an option representing if the storage item exists (`Some<V>`)
/// or if the storage item does not exist (`None`), independent of the `QueryType`.
fn try_mutate_exists<KArg, R, E, F>(key: KArg, f: F) -> Result<R, E>
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
F: FnOnce(&mut Option<V>) -> Result<R, E>;
/// Take the value under a key.
fn take<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Self::Query;
/// Append the given items to the value in the storage.
///
/// `V` is required to implement `codec::EncodeAppend`.
///
/// # Warning
///
/// If the storage item is not encoded properly, the storage will be overwritten
/// and set to `[item]`. Any default value set for the storage item will be ignored
/// on overwrite.
fn append<Item, EncodeLikeItem, KArg>(key: KArg, item: EncodeLikeItem)
where
KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter,
Item: Encode,
EncodeLikeItem: EncodeLike<Item>,
V: StorageAppend<Item>;
/// Read the length of the storage value without decoding the entire value under the
/// given `key`.
///
/// `V` is required to implement [`StorageDecodeLength`].
///
/// If the value does not exists or it fails to decode the length, `None` is returned.
/// Otherwise `Some(len)` is returned.
///
/// # Warning
///
/// `None` does not mean that `get()` does not return a value. The default value is completly
/// ignored by this function.
fn decode_len<KArg: EncodeLikeTuple<K::KArg> + TupleToEncodedIter>(key: KArg) -> Option<usize>
where
V: StorageDecodeLength,
{
V::decode_len(&Self::hashed_key_for(key))
}