pub struct CGraph<const K: u8> {
pub size: usize,
/* private fields */
}Expand description
Edge-colored graphs.
Implentation of graphs whose edges are colored by a number in a set {1,…,K-1}
(So that accounting for non-edges, each pair has K possible states).
Fields§
§size: usizeImplementations§
Trait Implementations§
Source§impl<const K: u8> Canonize for CGraph<K>
impl<const K: u8> Canonize for CGraph<K>
Source§fn invariant_neighborhood(&self, v: usize) -> Vec<Vec<usize>>
fn invariant_neighborhood(&self, v: usize) -> Vec<Vec<usize>>
Return lists of vertices that are invariant isomorphism. Read more
Source§fn apply_morphism(&self, p: &[usize]) -> Self
fn apply_morphism(&self, p: &[usize]) -> Self
Return the result of the action of a permuation
p on the object. Read moreSource§fn invariant_coloring(&self) -> Option<Vec<u64>>
fn invariant_coloring(&self) -> Option<Vec<u64>>
Optionally returns a value for each node that is invariant by isomorphism. Read more
Source§fn canonical_typed(&self, sigma: usize) -> Self
fn canonical_typed(&self, sigma: usize) -> Self
The “typed” objects refers to the case where only
the action of permutations that are constant
on
0..sigma are considered. Read moreSource§fn morphism_to_canonical(&self) -> Vec<usize>
fn morphism_to_canonical(&self) -> Vec<usize>
Source§fn automorphisms(&self) -> AutomorphismIterator<Self>
fn automorphisms(&self) -> AutomorphismIterator<Self>
Iterator on the automorphism group of
g. Read moreSource§fn stabilizer(&self, sigma: usize) -> AutomorphismIterator<Self>
fn stabilizer(&self, sigma: usize) -> AutomorphismIterator<Self>
Source§impl<'de, const K: u8> Deserialize<'de> for CGraph<K>
impl<'de, const K: u8> Deserialize<'de> for CGraph<K>
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Source§impl<const K: u8> Flag for CGraph<K>
impl<const K: u8> Flag for CGraph<K>
Source§const NAME: &'static str
const NAME: &'static str
A unique name for this type of flags. For instance “Graph”.
This nameis used for naming the associated data subdirectory.
Source§fn induce(&self, p: &[usize]) -> Self
fn induce(&self, p: &[usize]) -> Self
Returns the subflag induced by the vertices in the slice
set.Source§fn size_zero_flags() -> Vec<Self>
fn size_zero_flags() -> Vec<Self>
Returns the set of all flags of size 0. Read more
Source§fn superflags(&self) -> Vec<Self>
fn superflags(&self) -> Vec<Self>
Source§const HEREDITARY: bool = true
const HEREDITARY: bool = true
Setting this parameter to
false deactivate checks that induced subflags exists.
Must be true in every classic case.Source§fn generate_next(previous: &[Self]) -> Vec<Self>
fn generate_next(previous: &[Self]) -> Vec<Self>
Return the list of flags of size
self.size() + 1 that contain self
as an induced subflag reduced modulo isomorphism.Source§fn generate(n: usize) -> Vec<Self>
fn generate(n: usize) -> Vec<Self>
Return the list of flags of size
n reduced modulo isomorphism.Source§fn generate_typed_up(type_flag: &Self, g_vec: &[Self]) -> Vec<Self>
fn generate_typed_up(type_flag: &Self, g_vec: &[Self]) -> Vec<Self>
Return the list of flags of
g_vec that can be rooted on the
flag type_flag.
Each different way to root this flag give a different flag in the result.Source§fn generate_typed(type_flag: &Self, size: usize) -> Vec<Self>
fn generate_typed(type_flag: &Self, size: usize) -> Vec<Self>
Return the list of flag of size
size rooted on type_flag
reduced modulo (typed) isomorphism.Source§fn select_type(&self, eta: &[usize]) -> Self
fn select_type(&self, eta: &[usize]) -> Self
Reorder self so that the
eta.len() first vertices are the values
of eta in the corresponding order.Source§impl<const K: u8> Ord for CGraph<K>
impl<const K: u8> Ord for CGraph<K>
Source§impl<const K: u8> PartialOrd for CGraph<K>
impl<const K: u8> PartialOrd for CGraph<K>
impl<const K: u8> Eq for CGraph<K>
impl<const K: u8> StructuralPartialEq for CGraph<K>
Auto Trait Implementations§
impl<const K: u8> Freeze for CGraph<K>
impl<const K: u8> RefUnwindSafe for CGraph<K>
impl<const K: u8> Send for CGraph<K>
impl<const K: u8> Sync for CGraph<K>
impl<const K: u8> Unpin for CGraph<K>
impl<const K: u8> UnwindSafe for CGraph<K>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§unsafe fn to_subset_unchecked(&self) -> SS
unsafe fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.