Struct fj_kernel::algorithms::Tolerance
source · [−]pub struct Tolerance(_);Expand description
A tolerance value
A tolerance value is used during approximation. It defines the maximum allowed deviation of the approximation from the actual shape.
The Tolerance type enforces that the tolerance value is always larger than
zero, which is an attribute that the approximation code relies on.
Failing From/Into implementation
The From/Into implementations of tolerance are fallible, which goes
against the explicit mandate of those traits, as stated in their
documentation.
A fallible Into provides a lot of convenience in test code. Since said
documentation doesn’t provide any actual reasoning for this requirement, I’m
feeling free to just ignore it.
Implementations
Trait Implementations
sourceimpl Ord for Tolerance
impl Ord for Tolerance
sourceimpl PartialOrd<Tolerance> for Tolerance
impl PartialOrd<Tolerance> for Tolerance
sourcefn partial_cmp(&self, other: &Tolerance) -> Option<Ordering>
fn partial_cmp(&self, other: &Tolerance) -> Option<Ordering>
This method returns an ordering between self and other values if one exists. Read more
1.0.0 · sourcefn lt(&self, other: &Rhs) -> bool
fn lt(&self, other: &Rhs) -> bool
This method tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · sourcefn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for self and other) and is used by the <=
operator. Read more
impl Copy for Tolerance
impl Eq for Tolerance
impl StructuralEq for Tolerance
impl StructuralPartialEq for Tolerance
Auto Trait Implementations
impl RefUnwindSafe for Tolerance
impl Send for Tolerance
impl Sync for Tolerance
impl Unpin for Tolerance
impl UnwindSafe for Tolerance
Blanket Implementations
sourceimpl<T> BorrowMut<T> for T where
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<T> Downcast for T where
T: Any,
impl<T> Downcast for T where
T: Any,
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more
fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s. Read more
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s. Read more
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SP where
SS: SubsetOf<SP>,
fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct self from the equivalent element of its
superset. Read more
fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if self is actually part of its subset T (and can be converted to it).
fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as self.to_subset but without any property checks. Always succeeds.
fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts self to the equivalent element of its superset.