Struct fj_kernel::objects::SurfaceVertex
source · pub struct SurfaceVertex { /* private fields */ }Expand description
A vertex, defined in surface (2D) coordinates
Implementations§
source§impl SurfaceVertex
impl SurfaceVertex
sourcepub fn new(
position: impl Into<Point<2>>,
surface: Handle<Surface>,
global_form: Handle<GlobalVertex>
) -> Self
pub fn new(
position: impl Into<Point<2>>,
surface: Handle<Surface>,
global_form: Handle<GlobalVertex>
) -> Self
Construct a new instance of SurfaceVertex
Examples found in repository?
src/partial/objects/vertex.rs (line 120)
109 110 111 112 113 114 115 116 117 118 119 120 121
fn build(mut self, objects: &mut Service<Objects>) -> Self::Full {
if self.global_form.read().position.is_none() {
self.infer_global_position();
}
let position = self
.position
.expect("Can't build `SurfaceVertex` without position");
let surface = self.surface.build(objects);
let global_form = self.global_form.build(objects);
SurfaceVertex::new(position, surface, global_form)
}More examples
src/algorithms/transform/vertex.rs (line 54)
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform position, as that is defined in surface
// coordinates and thus transforming the surface takes care of it.
let position = self.position();
let surface = self
.surface()
.clone()
.transform_with_cache(transform, objects, cache);
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(position, surface, global_form)
}src/algorithms/sweep/vertex.rs (line 102)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (vertex, surface) = self;
let path = path.into();
// The result of sweeping a `Vertex` is an `Edge`. Seems
// straight-forward at first, but there are some subtleties we need to
// understand:
//
// 1. To create an `Edge`, we need the `Curve` that defines it. A
// `Curve` is defined in a `Surface`, and we're going to need that to
// create the `Curve`. Which is why this `Sweep` implementation is
// for `(Vertex, Surface)`, and not just for `Vertex`.
// 2. Please note that, while the output `Edge` has two vertices, our
// input `Vertex` is not one of them! It can't be, unless the `Curve`
// of the output `Edge` happens to be the same `Curve` that the input
// `Vertex` is defined on. That would be an edge case that probably
// can't result in anything valid, and we're going to ignore it for
// now.
// 3. This means, we have to compute everything that defines the
// output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
//
// Before we get to that though, let's make sure that whoever called
// this didn't give us bad input.
// So, we're supposed to create the `Edge` by sweeping a `Vertex` using
// `path`. Unless `path` is identical to the path that created the
// `Surface`, this doesn't make any sense. Let's make sure this
// requirement is met.
//
// Further, the `Curve` that was swept to create the `Surface` needs to
// be the same `Curve` that the input `Vertex` is defined on. If it's
// not, we have no way of knowing the surface coordinates of the input
// `Vertex` on the `Surface`, and we're going to need to do that further
// down. There's no way to check for that, unfortunately.
assert_eq!(path, surface.geometry().v);
// With that out of the way, let's start by creating the `GlobalEdge`,
// as that is the most straight-forward part of this operations, and
// we're going to need it soon anyway.
let (edge_global, vertices_global) = vertex
.global_form()
.clone()
.sweep_with_cache(path, cache, objects);
// Next, let's compute the surface coordinates of the two vertices of
// the output `Edge`, as we're going to need these for the rest of this
// operation.
//
// They both share a u-coordinate, which is the t-coordinate of our
// input `Vertex`. Remember, we validated above, that the `Curve` of the
// `Surface` and the curve of the input `Vertex` are the same, so we can
// do that.
//
// Now remember what we also validated above: That `path`, which we're
// using to create the output `Edge`, also created the `Surface`, and
// thereby defined its coordinate system. That makes the v-coordinates
// straight-forward: The start of the edge is at zero, the end is at
// one.
let points_surface = [
Point::from([vertex.position().t, Scalar::ZERO]),
Point::from([vertex.position().t, Scalar::ONE]),
];
// Armed with those coordinates, creating the `Curve` of the output
// `Edge` is straight-forward.
let curve = {
let (path, _) = SurfacePath::line_from_points(points_surface);
Curve::new(surface.clone(), path, edge_global.curve().clone())
.insert(objects)
};
let vertices_surface = {
let [_, position] = points_surface;
let [_, global_form] = vertices_global;
[
vertex.surface_form().clone(),
SurfaceVertex::new(position, surface, global_form)
.insert(objects),
]
};
// And now the vertices. Again, nothing wild here.
let vertices = vertices_surface.map(|surface_form| {
Vertex::new(
[surface_form.position().v],
curve.clone(),
surface_form,
)
.insert(objects)
});
// And finally, creating the output `Edge` is just a matter of
// assembling the pieces we've already created.
HalfEdge::new(vertices, edge_global).insert(objects)
}src/algorithms/sweep/edge.rs (lines 72-76)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (edge, color) = self;
let path = path.into();
let surface =
edge.curve().clone().sweep_with_cache(path, cache, objects);
// We can't use the edge we're sweeping from as the bottom edge, as that
// is not defined in the right surface. Let's create a new bottom edge,
// by swapping the surface of the original.
let bottom_edge = {
let vertices = edge.vertices();
let points_curve_and_surface = vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ZERO])
});
let curve = {
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(
surface.clone(),
path,
edge.curve().global_form().clone(),
)
.insert(objects)
};
let vertices = {
let points_surface = points_curve_and_surface
.map(|(_, point_surface)| point_surface);
vertices
.each_ref_ext()
.into_iter_fixed()
.zip(points_surface)
.collect::<[_; 2]>()
.map(|(vertex, point_surface)| {
let surface_vertex = SurfaceVertex::new(
point_surface,
surface.clone(),
vertex.global_form().clone(),
)
.insert(objects);
Vertex::new(
vertex.position(),
curve.clone(),
surface_vertex,
)
.insert(objects)
})
};
HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
};
let side_edges = bottom_edge.vertices().clone().map(|vertex| {
(vertex, surface.clone()).sweep_with_cache(path, cache, objects)
});
let top_edge = {
let bottom_vertices = bottom_edge.vertices();
let surface_vertices = side_edges.clone().map(|edge| {
let [_, vertex] = edge.vertices();
vertex.surface_form().clone()
});
let points_curve_and_surface =
bottom_vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ONE])
});
let curve = {
let global = bottom_edge
.curve()
.global_form()
.clone()
.translate(path, objects);
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(surface, path, global).insert(objects)
};
let global = GlobalEdge::new(
curve.global_form().clone(),
surface_vertices
.clone()
.map(|surface_vertex| surface_vertex.global_form().clone()),
)
.insert(objects);
let vertices = bottom_vertices
.each_ref_ext()
.into_iter_fixed()
.zip(surface_vertices)
.collect::<[_; 2]>()
.map(|(vertex, surface_form)| {
Vertex::new(vertex.position(), curve.clone(), surface_form)
.insert(objects)
});
HalfEdge::new(vertices, global).insert(objects)
};
let cycle = {
let a = bottom_edge;
let [d, b] = side_edges;
let c = top_edge;
let mut edges = [a, b, c, d];
// Make sure that edges are oriented correctly.
let mut i = 0;
while i < edges.len() {
let j = (i + 1) % edges.len();
let [_, prev_last] = edges[i].vertices();
let [next_first, _] = edges[j].vertices();
// Need to compare surface forms here, as the global forms might
// be coincident when sweeping circles, despite the vertices
// being different!
if prev_last.surface_form().id()
!= next_first.surface_form().id()
{
edges[j] = edges[j].clone().reverse(objects);
}
i += 1;
}
Cycle::new(edges).insert(objects)
};
let face = PartialFace {
exterior: Partial::from(cycle),
color: Some(color),
..Default::default()
};
face.build(objects).insert(objects)
}sourcepub fn position(&self) -> Point<2>
pub fn position(&self) -> Point<2>
Access the position of the vertex on the surface
Examples found in repository?
src/partial/objects/vertex.rs (line 97)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
fn from_full(
surface_vertex: &Self::Full,
cache: &mut FullToPartialCache,
) -> Self {
Self {
position: Some(surface_vertex.position()),
surface: Partial::from_full(
surface_vertex.surface().clone(),
cache,
),
global_form: Partial::from_full(
surface_vertex.global_form().clone(),
cache,
),
}
}More examples
src/algorithms/approx/edge.rs (line 30)
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
fn approx_with_cache(
self,
tolerance: impl Into<Tolerance>,
cache: &mut Self::Cache,
) -> Self::Approximation {
let [a, b] = self.vertices();
let boundary = [a, b].map(|vertex| vertex.position());
let range = RangeOnPath { boundary };
let first = ApproxPoint::new(
a.surface_form().position(),
a.global_form().position(),
);
let curve_approx =
(self.curve(), range).approx_with_cache(tolerance, cache);
HalfEdgeApprox {
first,
curve_approx,
}
}src/algorithms/transform/vertex.rs (line 43)
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform position, as that is defined in surface
// coordinates and thus transforming the surface takes care of it.
let position = self.position();
let surface = self
.surface()
.clone()
.transform_with_cache(transform, objects, cache);
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(position, surface, global_form)
}src/validate/vertex.rs (line 111)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
fn check_position(
vertex: &Vertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let curve_position_as_surface = vertex
.curve()
.path()
.point_from_path_coords(vertex.position());
let surface_position = vertex.surface_form().position();
let distance = curve_position_as_surface.distance_to(&surface_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
vertex: vertex.clone(),
surface_vertex: vertex.surface_form().clone_object(),
curve_position_as_surface,
distance,
});
}
Ok(())
}
}
/// [`SurfaceVertex`] validation error
#[derive(Clone, Debug, thiserror::Error)]
pub enum SurfaceVertexValidationError {
/// Mismatch between position and position of global form
#[error(
"`SurfaceVertex` position doesn't match position of its global form\n\
- `SurfaceVertex`: {surface_vertex:#?}\n\
- `GlobalVertex`: {global_vertex:#?}\n\
- `SurfaceVertex` position as global: {surface_position_as_global:?}\n\
- Distance between the positions: {distance}"
)]
PositionMismatch {
/// The surface vertex
surface_vertex: SurfaceVertex,
/// The mismatched global vertex
global_vertex: GlobalVertex,
/// The surface position converted into a global position
surface_position_as_global: Point<3>,
/// The distance between the positions
distance: Scalar,
},
}
impl SurfaceVertexValidationError {
fn check_position(
surface_vertex: &SurfaceVertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let surface_position_as_global = surface_vertex
.surface()
.geometry()
.point_from_surface_coords(surface_vertex.position());
let global_position = surface_vertex.global_form().position();
let distance = surface_position_as_global.distance_to(&global_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
surface_vertex: surface_vertex.clone(),
global_vertex: surface_vertex.global_form().clone_object(),
surface_position_as_global,
distance,
});
}
Ok(())
}src/objects/full/cycle.rs (line 97)
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
pub fn winding(&self) -> Winding {
// The cycle could be made up of one or two circles. If that is the
// case, the winding of the cycle is determined by the winding of the
// first circle.
if self.half_edges.len() < 3 {
let first = self
.half_edges()
.next()
.expect("Invalid cycle: expected at least one half-edge");
let [a, b] = first.vertices();
let edge_direction_positive = a.position() < b.position();
let circle = match first.curve().path() {
SurfacePath::Circle(circle) => circle,
SurfacePath::Line(_) => unreachable!(
"Invalid cycle: less than 3 edges, but not all are circles"
),
};
let cross_positive = circle.a().cross2d(&circle.b()) > Scalar::ZERO;
if edge_direction_positive == cross_positive {
return Winding::Ccw;
} else {
return Winding::Cw;
}
}
// Now that we got the special case out of the way, we can treat the
// cycle as a polygon:
// https://stackoverflow.com/a/1165943
let mut sum = Scalar::ZERO;
for [a, b] in self.half_edges.as_slice().array_windows_ext() {
let [a, b] = [a, b].map(|half_edge| {
let [vertex, _] = half_edge.vertices();
vertex.surface_form().position()
});
sum += (b.u - a.u) * (b.v + a.v);
}
if sum > Scalar::ZERO {
return Winding::Cw;
}
if sum < Scalar::ZERO {
return Winding::Ccw;
}
unreachable!("Encountered invalid cycle: {self:#?}");
}src/algorithms/sweep/vertex.rs (line 110)
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (vertex, surface) = self;
let path = path.into();
// The result of sweeping a `Vertex` is an `Edge`. Seems
// straight-forward at first, but there are some subtleties we need to
// understand:
//
// 1. To create an `Edge`, we need the `Curve` that defines it. A
// `Curve` is defined in a `Surface`, and we're going to need that to
// create the `Curve`. Which is why this `Sweep` implementation is
// for `(Vertex, Surface)`, and not just for `Vertex`.
// 2. Please note that, while the output `Edge` has two vertices, our
// input `Vertex` is not one of them! It can't be, unless the `Curve`
// of the output `Edge` happens to be the same `Curve` that the input
// `Vertex` is defined on. That would be an edge case that probably
// can't result in anything valid, and we're going to ignore it for
// now.
// 3. This means, we have to compute everything that defines the
// output `Edge`: The `Curve`, the vertices, and the `GlobalCurve`.
//
// Before we get to that though, let's make sure that whoever called
// this didn't give us bad input.
// So, we're supposed to create the `Edge` by sweeping a `Vertex` using
// `path`. Unless `path` is identical to the path that created the
// `Surface`, this doesn't make any sense. Let's make sure this
// requirement is met.
//
// Further, the `Curve` that was swept to create the `Surface` needs to
// be the same `Curve` that the input `Vertex` is defined on. If it's
// not, we have no way of knowing the surface coordinates of the input
// `Vertex` on the `Surface`, and we're going to need to do that further
// down. There's no way to check for that, unfortunately.
assert_eq!(path, surface.geometry().v);
// With that out of the way, let's start by creating the `GlobalEdge`,
// as that is the most straight-forward part of this operations, and
// we're going to need it soon anyway.
let (edge_global, vertices_global) = vertex
.global_form()
.clone()
.sweep_with_cache(path, cache, objects);
// Next, let's compute the surface coordinates of the two vertices of
// the output `Edge`, as we're going to need these for the rest of this
// operation.
//
// They both share a u-coordinate, which is the t-coordinate of our
// input `Vertex`. Remember, we validated above, that the `Curve` of the
// `Surface` and the curve of the input `Vertex` are the same, so we can
// do that.
//
// Now remember what we also validated above: That `path`, which we're
// using to create the output `Edge`, also created the `Surface`, and
// thereby defined its coordinate system. That makes the v-coordinates
// straight-forward: The start of the edge is at zero, the end is at
// one.
let points_surface = [
Point::from([vertex.position().t, Scalar::ZERO]),
Point::from([vertex.position().t, Scalar::ONE]),
];
// Armed with those coordinates, creating the `Curve` of the output
// `Edge` is straight-forward.
let curve = {
let (path, _) = SurfacePath::line_from_points(points_surface);
Curve::new(surface.clone(), path, edge_global.curve().clone())
.insert(objects)
};
let vertices_surface = {
let [_, position] = points_surface;
let [_, global_form] = vertices_global;
[
vertex.surface_form().clone(),
SurfaceVertex::new(position, surface, global_form)
.insert(objects),
]
};
// And now the vertices. Again, nothing wild here.
let vertices = vertices_surface.map(|surface_form| {
Vertex::new(
[surface_form.position().v],
curve.clone(),
surface_form,
)
.insert(objects)
});
// And finally, creating the output `Edge` is just a matter of
// assembling the pieces we've already created.
HalfEdge::new(vertices, edge_global).insert(objects)
}sourcepub fn surface(&self) -> &Handle<Surface>
pub fn surface(&self) -> &Handle<Surface>
Access the surface that the vertex is defined in
Examples found in repository?
src/partial/objects/vertex.rs (line 99)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
fn from_full(
surface_vertex: &Self::Full,
cache: &mut FullToPartialCache,
) -> Self {
Self {
position: Some(surface_vertex.position()),
surface: Partial::from_full(
surface_vertex.surface().clone(),
cache,
),
global_form: Partial::from_full(
surface_vertex.global_form().clone(),
cache,
),
}
}More examples
src/validate/vertex.rs (line 91)
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
fn check_surface_identity(vertex: &Vertex) -> Result<(), Self> {
let curve_surface = vertex.curve().surface();
let surface_form_surface = vertex.surface_form().surface();
if curve_surface.id() != surface_form_surface.id() {
return Err(Self::SurfaceMismatch {
curve_surface: curve_surface.clone(),
surface_form_surface: surface_form_surface.clone(),
});
}
Ok(())
}
fn check_position(
vertex: &Vertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let curve_position_as_surface = vertex
.curve()
.path()
.point_from_path_coords(vertex.position());
let surface_position = vertex.surface_form().position();
let distance = curve_position_as_surface.distance_to(&surface_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
vertex: vertex.clone(),
surface_vertex: vertex.surface_form().clone_object(),
curve_position_as_surface,
distance,
});
}
Ok(())
}
}
/// [`SurfaceVertex`] validation error
#[derive(Clone, Debug, thiserror::Error)]
pub enum SurfaceVertexValidationError {
/// Mismatch between position and position of global form
#[error(
"`SurfaceVertex` position doesn't match position of its global form\n\
- `SurfaceVertex`: {surface_vertex:#?}\n\
- `GlobalVertex`: {global_vertex:#?}\n\
- `SurfaceVertex` position as global: {surface_position_as_global:?}\n\
- Distance between the positions: {distance}"
)]
PositionMismatch {
/// The surface vertex
surface_vertex: SurfaceVertex,
/// The mismatched global vertex
global_vertex: GlobalVertex,
/// The surface position converted into a global position
surface_position_as_global: Point<3>,
/// The distance between the positions
distance: Scalar,
},
}
impl SurfaceVertexValidationError {
fn check_position(
surface_vertex: &SurfaceVertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let surface_position_as_global = surface_vertex
.surface()
.geometry()
.point_from_surface_coords(surface_vertex.position());
let global_position = surface_vertex.global_form().position();
let distance = surface_position_as_global.distance_to(&global_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
surface_vertex: surface_vertex.clone(),
global_vertex: surface_vertex.global_form().clone_object(),
surface_position_as_global,
distance,
});
}
Ok(())
}src/algorithms/transform/vertex.rs (line 46)
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform position, as that is defined in surface
// coordinates and thus transforming the surface takes care of it.
let position = self.position();
let surface = self
.surface()
.clone()
.transform_with_cache(transform, objects, cache);
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(position, surface, global_form)
}sourcepub fn global_form(&self) -> &Handle<GlobalVertex>
pub fn global_form(&self) -> &Handle<GlobalVertex>
Access the global form of the vertex
Examples found in repository?
More examples
src/partial/objects/vertex.rs (line 103)
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
fn from_full(
surface_vertex: &Self::Full,
cache: &mut FullToPartialCache,
) -> Self {
Self {
position: Some(surface_vertex.position()),
surface: Partial::from_full(
surface_vertex.surface().clone(),
cache,
),
global_form: Partial::from_full(
surface_vertex.global_form().clone(),
cache,
),
}
}src/algorithms/transform/vertex.rs (line 50)
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache,
) -> Self {
// Don't need to transform position, as that is defined in surface
// coordinates and thus transforming the surface takes care of it.
let position = self.position();
let surface = self
.surface()
.clone()
.transform_with_cache(transform, objects, cache);
let global_form = self
.global_form()
.clone()
.transform_with_cache(transform, objects, cache);
Self::new(position, surface, global_form)
}src/validate/vertex.rs (line 163)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
fn check_position(
surface_vertex: &SurfaceVertex,
config: &ValidationConfig,
) -> Result<(), Self> {
let surface_position_as_global = surface_vertex
.surface()
.geometry()
.point_from_surface_coords(surface_vertex.position());
let global_position = surface_vertex.global_form().position();
let distance = surface_position_as_global.distance_to(&global_position);
if distance > config.identical_max_distance {
return Err(Self::PositionMismatch {
surface_vertex: surface_vertex.clone(),
global_vertex: surface_vertex.global_form().clone_object(),
surface_position_as_global,
distance,
});
}
Ok(())
}src/algorithms/sweep/edge.rs (line 130)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
fn sweep_with_cache(
self,
path: impl Into<Vector<3>>,
cache: &mut SweepCache,
objects: &mut Service<Objects>,
) -> Self::Swept {
let (edge, color) = self;
let path = path.into();
let surface =
edge.curve().clone().sweep_with_cache(path, cache, objects);
// We can't use the edge we're sweeping from as the bottom edge, as that
// is not defined in the right surface. Let's create a new bottom edge,
// by swapping the surface of the original.
let bottom_edge = {
let vertices = edge.vertices();
let points_curve_and_surface = vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ZERO])
});
let curve = {
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(
surface.clone(),
path,
edge.curve().global_form().clone(),
)
.insert(objects)
};
let vertices = {
let points_surface = points_curve_and_surface
.map(|(_, point_surface)| point_surface);
vertices
.each_ref_ext()
.into_iter_fixed()
.zip(points_surface)
.collect::<[_; 2]>()
.map(|(vertex, point_surface)| {
let surface_vertex = SurfaceVertex::new(
point_surface,
surface.clone(),
vertex.global_form().clone(),
)
.insert(objects);
Vertex::new(
vertex.position(),
curve.clone(),
surface_vertex,
)
.insert(objects)
})
};
HalfEdge::new(vertices, edge.global_form().clone()).insert(objects)
};
let side_edges = bottom_edge.vertices().clone().map(|vertex| {
(vertex, surface.clone()).sweep_with_cache(path, cache, objects)
});
let top_edge = {
let bottom_vertices = bottom_edge.vertices();
let surface_vertices = side_edges.clone().map(|edge| {
let [_, vertex] = edge.vertices();
vertex.surface_form().clone()
});
let points_curve_and_surface =
bottom_vertices.clone().map(|vertex| {
(vertex.position(), [vertex.position().t, Scalar::ONE])
});
let curve = {
let global = bottom_edge
.curve()
.global_form()
.clone()
.translate(path, objects);
// Please note that creating a line here is correct, even if the
// global curve is a circle. Projected into the side surface, it
// is going to be a line either way.
let path =
SurfacePath::Line(Line::from_points_with_line_coords(
points_curve_and_surface,
));
Curve::new(surface, path, global).insert(objects)
};
let global = GlobalEdge::new(
curve.global_form().clone(),
surface_vertices
.clone()
.map(|surface_vertex| surface_vertex.global_form().clone()),
)
.insert(objects);
let vertices = bottom_vertices
.each_ref_ext()
.into_iter_fixed()
.zip(surface_vertices)
.collect::<[_; 2]>()
.map(|(vertex, surface_form)| {
Vertex::new(vertex.position(), curve.clone(), surface_form)
.insert(objects)
});
HalfEdge::new(vertices, global).insert(objects)
};
let cycle = {
let a = bottom_edge;
let [d, b] = side_edges;
let c = top_edge;
let mut edges = [a, b, c, d];
// Make sure that edges are oriented correctly.
let mut i = 0;
while i < edges.len() {
let j = (i + 1) % edges.len();
let [_, prev_last] = edges[i].vertices();
let [next_first, _] = edges[j].vertices();
// Need to compare surface forms here, as the global forms might
// be coincident when sweeping circles, despite the vertices
// being different!
if prev_last.surface_form().id()
!= next_first.surface_form().id()
{
edges[j] = edges[j].clone().reverse(objects);
}
i += 1;
}
Cycle::new(edges).insert(objects)
};
let face = PartialFace {
exterior: Partial::from(cycle),
color: Some(color),
..Default::default()
};
face.build(objects).insert(objects)
}Trait Implementations§
source§impl Clone for SurfaceVertex
impl Clone for SurfaceVertex
source§fn clone(&self) -> SurfaceVertex
fn clone(&self) -> SurfaceVertex
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl Debug for SurfaceVertex
impl Debug for SurfaceVertex
source§impl From<SurfaceVertex> for Object<Bare>
impl From<SurfaceVertex> for Object<Bare>
source§fn from(object: SurfaceVertex) -> Self
fn from(object: SurfaceVertex) -> Self
Converts to this type from the input type.
source§impl HasPartial for SurfaceVertex
impl HasPartial for SurfaceVertex
§type Partial = PartialSurfaceVertex
type Partial = PartialSurfaceVertex
The type representing the partial variant of this object
source§impl Hash for SurfaceVertex
impl Hash for SurfaceVertex
source§impl Insert for SurfaceVertex
impl Insert for SurfaceVertex
source§impl Ord for SurfaceVertex
impl Ord for SurfaceVertex
source§fn cmp(&self, other: &SurfaceVertex) -> Ordering
fn cmp(&self, other: &SurfaceVertex) -> Ordering
1.21.0 · source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values. Read more
source§impl PartialEq<SurfaceVertex> for SurfaceVertex
impl PartialEq<SurfaceVertex> for SurfaceVertex
source§fn eq(&self, other: &SurfaceVertex) -> bool
fn eq(&self, other: &SurfaceVertex) -> bool
This method tests for
self and other values to be equal, and is used
by ==.source§impl PartialOrd<SurfaceVertex> for SurfaceVertex
impl PartialOrd<SurfaceVertex> for SurfaceVertex
source§fn partial_cmp(&self, other: &SurfaceVertex) -> Option<Ordering>
fn partial_cmp(&self, other: &SurfaceVertex) -> Option<Ordering>
1.0.0 · source§fn le(&self, other: &Rhs) -> bool
fn le(&self, other: &Rhs) -> bool
This method tests less than or equal to (for
self and other) and is used by the <=
operator. Read moresource§impl TransformObject for SurfaceVertex
impl TransformObject for SurfaceVertex
source§fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
fn transform_with_cache(
self,
transform: &Transform,
objects: &mut Service<Objects>,
cache: &mut TransformCache
) -> Self
Transform the object using the provided cache
source§fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
fn transform(self, transform: &Transform, objects: &mut Service<Objects>) -> Self
Transform the object
source§impl Validate for SurfaceVertex
impl Validate for SurfaceVertex
§type Error = SurfaceVertexValidationError
type Error = SurfaceVertexValidationError
The error that validation of the implementing type can result in
source§fn validate_with_config(
&self,
config: &ValidationConfig
) -> Result<(), Self::Error>
fn validate_with_config(
&self,
config: &ValidationConfig
) -> Result<(), Self::Error>
Validate the object
impl Eq for SurfaceVertex
impl StructuralEq for SurfaceVertex
impl StructuralPartialEq for SurfaceVertex
Auto Trait Implementations§
impl !RefUnwindSafe for SurfaceVertex
impl Send for SurfaceVertex
impl Sync for SurfaceVertex
impl Unpin for SurfaceVertex
impl !UnwindSafe for SurfaceVertex
Blanket Implementations§
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>
Convert
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
Convert
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
Convert
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
Convert
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.