Struct fibertools_rs::basemods::BaseMods
source · Fields
base_mods: Vec<BaseMod>Implementations
sourceimpl BaseMods
impl BaseMods
pub fn new(record: &Record, min_ml_score: u8) -> BaseMods
pub fn m6a_positions(&self, reference: bool) -> Vec<i64> ⓘ
pub fn m6a_full_probabilities(&self, record: &Record) -> Vec<(i64, f32)> ⓘ
pub fn m6a(&self) -> (Vec<i64>, Vec<i64>, Vec<u8>)
pub fn cpg_positions(&self, reference: bool) -> Vec<i64> ⓘ
Example MM tag: MM:Z:C+m,11,6,10;A+a,0,0,0; Example ML tag: ML:B:C,157,30,2,164,118,255
Trait Implementations
impl Eq for BaseMods
impl StructuralEq for BaseMods
impl StructuralPartialEq for BaseMods
Auto Trait Implementations
impl RefUnwindSafe for BaseMods
impl Send for BaseMods
impl Sync for BaseMods
impl Unpin for BaseMods
impl UnwindSafe for BaseMods
Blanket Implementations
sourceimpl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
const: unstable · sourcefn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
sourceimpl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
impl<Q, K> Equivalent<K> for Qwhere
Q: Eq + ?Sized,
K: Borrow<Q> + ?Sized,
sourcefn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
Compare self to
key and return true if they are equal.impl<T> Pointable for T
impl<T> Pointable for T
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read morefn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.