Struct CapabilityStatementRestResourceOperation

Source
pub struct CapabilityStatementRestResourceOperation {
    pub id: Option<String>,
    pub extension: Vec<Extension>,
    pub modifier_extension: Vec<Extension>,
    pub name: String,
    pub name_ext: Option<FieldExtension>,
    pub definition: String,
    pub definition_ext: Option<FieldExtension>,
    pub documentation: Option<String>,
    pub documentation_ext: Option<FieldExtension>,
}
Expand description

Sub-fields of the operation field in CapabilityStatementRestResource

Fields§

§id: Option<String>

Unique id for inter-element referencing

Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces.

§extension: Vec<Extension>

Additional content defined by implementations

May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and managable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension.

There can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core level of simplicity for everyone.

§modifier_extension: Vec<Extension>

Extensions that cannot be ignored even if unrecognized

May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element’s descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and managable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions.

Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself).

There can be no stigma associated with the use of extensions by any application, project, or standard - regardless of the institution or jurisdiction that uses or defines the extensions. The use of extensions is what allows the FHIR specification to retain a core level of simplicity for everyone.

§name: String

Name by which the operation/query is invoked

The name of the operation or query. For an operation, this name is prefixed with $ and used in the URL. For a query, this is the name used in the _query parameter when the query is called. This SHOULD be the same as the OperationDefinition.code of the defining OperationDefinition. However, it can sometimes differ if necessary to disambiguate when a server supports multiple OperationDefinition that happen to share the same code.

The name here SHOULD be the same as the OperationDefinition.code in the referenced OperationDefinition, unless there is a name clash and the OperationDefinition.code cannot be used. The name does not include the “$” portion that is always included in the URL. There is no correspondence whatsoever between CapabilityStatement’s operation.name and OperationDefinition.name - the latter is used as a class name when generating code for the operation. HL7 will never define operations that have conflicting names.

§name_ext: Option<FieldExtension>

Extension field.

§definition: String

The defined operation/query

Where the formal definition can be found. If a server references the base definition of an Operation (i.e. from the specification itself such as texthttp://hl7.org/fhir/OperationDefinition/ValueSet-expand), that means it supports the full capabilities of the operation - e.g. both GET and POST invocation. If it only supports a subset, it must define its own custom OperationDefinition with a ‘base’ of the original OperationDefinition. The custom definition would describe the specific subset of functionality supported.

This can be used to build an HTML form to invoke the operation, for instance.

§definition_ext: Option<FieldExtension>

Extension field.

§documentation: Option<String>

Specific details about operation behavior

Documentation that describes anything special about the operation behavior, possibly detailing different behavior for system, type and instance-level invocation of the operation.

§documentation_ext: Option<FieldExtension>

Extension field.

Implementations§

Trait Implementations§

Source§

impl Clone for CapabilityStatementRestResourceOperation

Source§

fn clone(&self) -> CapabilityStatementRestResourceOperation

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for CapabilityStatementRestResourceOperation

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'de> Deserialize<'de> for CapabilityStatementRestResourceOperation

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl PartialEq for CapabilityStatementRestResourceOperation

Source§

fn eq(&self, other: &CapabilityStatementRestResourceOperation) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Serialize for CapabilityStatementRestResourceOperation

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl StructuralPartialEq for CapabilityStatementRestResourceOperation

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,