pub struct PhaseEquilibrium<E, const P: usize, N: Dim = Dyn, D: DualNum<f64> + Copy = f64>(pub [State<E, N, D>; P])
where
DefaultAllocator: Allocator<N>;Expand description
A thermodynamic equilibrium state.
The struct is parametrized over the number of phases with most features being implemented for the two phase vapor/liquid or liquid/liquid case.
§Contents
Tuple Fields§
§0: [State<E, N, D>; P]Implementations§
Source§impl<E: Residual<N, D>, N: Gradients, D: DualNum<f64> + Copy> PhaseEquilibrium<E, 2, N, D>
§Bubble and dew point calculations
impl<E: Residual<N, D>, N: Gradients, D: DualNum<f64> + Copy> PhaseEquilibrium<E, 2, N, D>
§Bubble and dew point calculations
Sourcepub fn bubble_point<TP: TemperatureOrPressure<D>>(
eos: &E,
temperature_or_pressure: TP,
liquid_molefracs: &OVector<D, N>,
tp_init: Option<TP::Other>,
vapor_molefracs: Option<&OVector<f64, N>>,
options: (SolverOptions, SolverOptions),
) -> FeosResult<Self>
pub fn bubble_point<TP: TemperatureOrPressure<D>>( eos: &E, temperature_or_pressure: TP, liquid_molefracs: &OVector<D, N>, tp_init: Option<TP::Other>, vapor_molefracs: Option<&OVector<f64, N>>, options: (SolverOptions, SolverOptions), ) -> FeosResult<Self>
Calculate a phase equilibrium for a given temperature or pressure and composition of the liquid phase.
Sourcepub fn dew_point<TP: TemperatureOrPressure<D>>(
eos: &E,
temperature_or_pressure: TP,
vapor_molefracs: &OVector<D, N>,
tp_init: Option<TP::Other>,
liquid_molefracs: Option<&OVector<f64, N>>,
options: (SolverOptions, SolverOptions),
) -> FeosResult<Self>
pub fn dew_point<TP: TemperatureOrPressure<D>>( eos: &E, temperature_or_pressure: TP, vapor_molefracs: &OVector<D, N>, tp_init: Option<TP::Other>, liquid_molefracs: Option<&OVector<f64, N>>, options: (SolverOptions, SolverOptions), ) -> FeosResult<Self>
Calculate a phase equilibrium for a given temperature or pressure and composition of the vapor phase.
Source§impl<E: Residual> PhaseEquilibrium<E, 3>
§Heteroazeotropes
impl<E: Residual> PhaseEquilibrium<E, 3>
§Heteroazeotropes
Sourcepub fn heteroazeotrope<TP: TemperatureOrPressure>(
eos: &E,
temperature_or_pressure: TP,
x_init: (f64, f64),
tp_init: Option<TP::Other>,
options: SolverOptions,
bubble_dew_options: (SolverOptions, SolverOptions),
) -> FeosResult<Self>
pub fn heteroazeotrope<TP: TemperatureOrPressure>( eos: &E, temperature_or_pressure: TP, x_init: (f64, f64), tp_init: Option<TP::Other>, options: SolverOptions, bubble_dew_options: (SolverOptions, SolverOptions), ) -> FeosResult<Self>
Calculate a heteroazeotrope (three phase equilbrium) for a binary system and given temperature or pressure.
Source§impl<E: Residual> PhaseEquilibrium<E, 2>
§Flash calculations
impl<E: Residual> PhaseEquilibrium<E, 2>
§Flash calculations
Sourcepub fn tp_flash(
eos: &E,
temperature: Temperature,
pressure: Pressure,
feed: &Moles<DVector<f64>>,
initial_state: Option<&PhaseEquilibrium<E, 2>>,
options: SolverOptions,
non_volatile_components: Option<Vec<usize>>,
) -> FeosResult<Self>
pub fn tp_flash( eos: &E, temperature: Temperature, pressure: Pressure, feed: &Moles<DVector<f64>>, initial_state: Option<&PhaseEquilibrium<E, 2>>, options: SolverOptions, non_volatile_components: Option<Vec<usize>>, ) -> FeosResult<Self>
Perform a Tp-flash calculation. If no initial values are given, the solution is initialized using a stability analysis.
The algorithm can be use to calculate phase equilibria of systems containing non-volatile components (e.g. ions).
Source§impl<E: Residual> PhaseEquilibrium<E, 2>
§Pure component phase equilibria
impl<E: Residual> PhaseEquilibrium<E, 2>
§Pure component phase equilibria
Sourcepub fn pure<TP: TemperatureOrPressure>(
eos: &E,
temperature_or_pressure: TP,
initial_state: Option<&Self>,
options: SolverOptions,
) -> FeosResult<Self>
pub fn pure<TP: TemperatureOrPressure>( eos: &E, temperature_or_pressure: TP, initial_state: Option<&Self>, options: SolverOptions, ) -> FeosResult<Self>
Calculate a phase equilibrium for a pure component.
Source§impl<E: Residual<N, D>, N: Gradients, D: DualNum<f64> + Copy> PhaseEquilibrium<E, 2, N, D>where
DefaultAllocator: Allocator<N>,
impl<E: Residual<N, D>, N: Gradients, D: DualNum<f64> + Copy> PhaseEquilibrium<E, 2, N, D>where
DefaultAllocator: Allocator<N>,
Sourcepub fn pure_t(
eos: &E,
temperature: Temperature<D>,
initial_state: Option<&Self>,
options: SolverOptions,
) -> FeosResult<(Pressure<D>, [Density<D>; 2])>
pub fn pure_t( eos: &E, temperature: Temperature<D>, initial_state: Option<&Self>, options: SolverOptions, ) -> FeosResult<(Pressure<D>, [Density<D>; 2])>
Calculate a phase equilibrium for a pure component and given temperature.
Source§impl<E: Residual + Subset> PhaseEquilibrium<E, 2>
impl<E: Residual + Subset> PhaseEquilibrium<E, 2>
Sourcepub fn vapor_pressure(
eos: &E,
temperature: Temperature,
) -> Vec<Option<Pressure>>
pub fn vapor_pressure( eos: &E, temperature: Temperature, ) -> Vec<Option<Pressure>>
Calculate the pure component vapor pressures of all components in the system for the given temperature.
Sourcepub fn boiling_temperature(
eos: &E,
pressure: Pressure,
) -> Vec<Option<Temperature>>
pub fn boiling_temperature( eos: &E, pressure: Pressure, ) -> Vec<Option<Temperature>>
Calculate the pure component boiling temperatures of all components in the system for the given pressure.
Sourcepub fn vle_pure_comps<TP: TemperatureOrPressure>(
eos: &E,
temperature_or_pressure: TP,
) -> Vec<Option<PhaseEquilibrium<E, 2>>>
pub fn vle_pure_comps<TP: TemperatureOrPressure>( eos: &E, temperature_or_pressure: TP, ) -> Vec<Option<PhaseEquilibrium<E, 2>>>
Calculate the pure component phase equilibria of all components in the system.
Source§impl<E: Residual, const P: usize> PhaseEquilibrium<E, P>
impl<E: Residual, const P: usize> PhaseEquilibrium<E, P>
pub fn _repr_markdown_(&self) -> String
Source§impl<E: Residual<N, D>, N: Dim, D: DualNum<f64> + Copy> PhaseEquilibrium<E, 2, N, D>where
DefaultAllocator: Allocator<N>,
impl<E: Residual<N, D>, N: Dim, D: DualNum<f64> + Copy> PhaseEquilibrium<E, 2, N, D>where
DefaultAllocator: Allocator<N>,
Source§impl<E> PhaseEquilibrium<E, 3>
impl<E> PhaseEquilibrium<E, 3>
Source§impl<E: Residual<N>, N: Dim> PhaseEquilibrium<E, 2, N>where
DefaultAllocator: Allocator<N>,
impl<E: Residual<N>, N: Dim> PhaseEquilibrium<E, 2, N>where
DefaultAllocator: Allocator<N>,
Sourcepub fn new_xpt(
eos: &E,
temperature: Temperature,
pressure: Pressure,
vapor_molefracs: &OVector<f64, N>,
liquid_molefracs: &OVector<f64, N>,
) -> FeosResult<Self>
pub fn new_xpt( eos: &E, temperature: Temperature, pressure: Pressure, vapor_molefracs: &OVector<f64, N>, liquid_molefracs: &OVector<f64, N>, ) -> FeosResult<Self>
Creates a new PhaseEquilibrium that contains two states at the specified temperature, pressure and molefracs.
The constructor can be used in custom phase equilibrium solvers or, e.g., to generate initial guesses for an actual VLE solver. In general, the two states generated are NOT in an equilibrium.
Source§impl<E: Residual<N>, N: Dim> PhaseEquilibrium<E, 2, N>where
DefaultAllocator: Allocator<N>,
§Utility functions
impl<E: Residual<N>, N: Dim> PhaseEquilibrium<E, 2, N>where
DefaultAllocator: Allocator<N>,
§Utility functions
Sourcepub fn is_trivial_solution(state1: &State<E, N>, state2: &State<E, N>) -> bool
pub fn is_trivial_solution(state1: &State<E, N>, state2: &State<E, N>) -> bool
Check if the two states form a trivial solution
Trait Implementations§
Source§impl<E: Clone, const P: usize, N: Clone + Dim, D: Clone + DualNum<f64> + Copy> Clone for PhaseEquilibrium<E, P, N, D>where
DefaultAllocator: Allocator<N>,
impl<E: Clone, const P: usize, N: Clone + Dim, D: Clone + DualNum<f64> + Copy> Clone for PhaseEquilibrium<E, P, N, D>where
DefaultAllocator: Allocator<N>,
Source§fn clone(&self) -> PhaseEquilibrium<E, P, N, D>
fn clone(&self) -> PhaseEquilibrium<E, P, N, D>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreAuto Trait Implementations§
impl<E, const P: usize, N = Dyn, D = f64> !Freeze for PhaseEquilibrium<E, P, N, D>
impl<E, const P: usize, N = Dyn, D = f64> !RefUnwindSafe for PhaseEquilibrium<E, P, N, D>
impl<E, const P: usize, N = Dyn, D = f64> !Send for PhaseEquilibrium<E, P, N, D>
impl<E, const P: usize, N = Dyn, D = f64> !Sync for PhaseEquilibrium<E, P, N, D>
impl<E, const P: usize, N = Dyn, D = f64> !Unpin for PhaseEquilibrium<E, P, N, D>
impl<E, const P: usize, N = Dyn, D = f64> !UnwindSafe for PhaseEquilibrium<E, P, N, D>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<T> PropertiesAD for T
impl<T> PropertiesAD for T
fn vapor_pressure<const P: usize>( &self, temperature: Temperature, ) -> FeosResult<Pressure<DualSVec<f64, f64, P>>>
fn equilibrium_liquid_density<const P: usize>( &self, temperature: Temperature, ) -> FeosResult<(Pressure<DualSVec<f64, f64, P>>, Density<DualSVec<f64, f64, P>>)>
fn liquid_density<const P: usize>( &self, temperature: Temperature, pressure: Pressure, ) -> FeosResult<Density<DualSVec<f64, f64, P>>>
fn vapor_pressure_parallel<const P: usize>(
parameter_names: [String; P],
parameters: ArrayView2<'_, f64>,
input: ArrayView2<'_, f64>,
) -> (Array1<f64>, Array2<f64>, Array1<bool>)where
Self: ParametersAD<1>,
fn liquid_density_parallel<const P: usize>(
parameter_names: [String; P],
parameters: ArrayView2<'_, f64>,
input: ArrayView2<'_, f64>,
) -> (Array1<f64>, Array2<f64>, Array1<bool>)where
Self: ParametersAD<1>,
fn equilibrium_liquid_density_parallel<const P: usize>(
parameter_names: [String; P],
parameters: ArrayView2<'_, f64>,
input: ArrayView2<'_, f64>,
) -> (Array1<f64>, Array2<f64>, Array1<bool>)where
Self: ParametersAD<1>,
fn bubble_point_pressure<const P: usize>( &self, temperature: Temperature, pressure: Option<Pressure>, liquid_molefracs: SVector<f64, 2>, ) -> FeosResult<Pressure<DualSVec<f64, f64, P>>>
fn dew_point_pressure<const P: usize>( &self, temperature: Temperature, pressure: Option<Pressure>, vapor_molefracs: SVector<f64, 2>, ) -> FeosResult<Pressure<DualSVec<f64, f64, P>>>
fn bubble_point_pressure_parallel<const P: usize>(
parameter_names: [String; P],
parameters: ArrayView2<'_, f64>,
input: ArrayView2<'_, f64>,
) -> (Array1<f64>, Array2<f64>, Array1<bool>)where
Self: ParametersAD<2>,
fn dew_point_pressure_parallel<const P: usize>(
parameter_names: [String; P],
parameters: ArrayView2<'_, f64>,
input: ArrayView2<'_, f64>,
) -> (Array1<f64>, Array2<f64>, Array1<bool>)where
Self: ParametersAD<2>,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.