pub struct Complex64Base;
Expand description
An approximate implementation of the complex numbers C
, using 64 bit floating
point numbers.
§Warning
Since floating point numbers do not exactly represent the complex numbers, and this crate follows
a mathematically precise approach, we cannot provide any function related to equality.
In particular, Complex64Base.eq_el(a, b)
is not supported, and will panic.
Hence, this ring has only limited use within this crate, and is currently only used for
floating-point FFTs.
Implementations§
Source§impl Complex64Base
impl Complex64Base
pub fn abs(&self, Complex64El: Complex64El) -> f64
pub fn conjugate(&self, Complex64El: Complex64El) -> Complex64El
pub fn exp(&self, Complex64El: Complex64El) -> Complex64El
pub fn closest_gaussian_int(&self, Complex64El: Complex64El) -> (i64, i64)
pub fn ln_main_branch(&self, Complex64El: Complex64El) -> Complex64El
pub fn is_absolute_approx_eq( &self, lhs: Complex64El, rhs: Complex64El, absolute_threshold: f64, ) -> bool
pub fn is_relative_approx_eq( &self, lhs: Complex64El, rhs: Complex64El, relative_limit: f64, ) -> bool
pub fn is_approx_eq( &self, lhs: Complex64El, rhs: Complex64El, precision: u64, ) -> bool
pub fn from_f64(&self, x: f64) -> Complex64El
pub fn root_of_unity(&self, i: i64, n: i64) -> Complex64El
pub fn re(&self, Complex64El: Complex64El) -> f64
pub fn im(&self, Complex64El: Complex64El) -> f64
Trait Implementations§
Source§impl CanHomFrom<Complex64Base> for Complex64Base
impl CanHomFrom<Complex64Base> for Complex64Base
Source§type Homomorphism = ()
type Homomorphism = ()
Source§fn has_canonical_hom(&self, from: &Self) -> Option<()>
fn has_canonical_hom(&self, from: &Self) -> Option<()>
from -> self
, returns Some(data)
, where
data
is additional data that can be used to compute the action of the homomorphism
on ring elements. Otherwise, None
is returned.Source§fn map_in(
&self,
_from: &Self,
el: <Self as RingBase>::Element,
_: &Self::Homomorphism,
) -> <Self as RingBase>::Element
fn map_in( &self, _from: &Self, el: <Self as RingBase>::Element, _: &Self::Homomorphism, ) -> <Self as RingBase>::Element
Source§fn map_in_ref(
&self,
from: &S,
el: &S::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn map_in_ref( &self, from: &S, el: &S::Element, hom: &Self::Homomorphism, ) -> Self::Element
Source§fn mul_assign_map_in(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
rhs
, and multiplies the result to lhs
.Source§fn mul_assign_map_in_ref(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: &S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
rhs
, taking it by reference, and multiplies the result to lhs
.Source§fn fma_map_in(
&self,
from: &S,
lhs: &Self::Element,
rhs: &S::Element,
summand: Self::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn fma_map_in( &self, from: &S, lhs: &Self::Element, rhs: &S::Element, summand: Self::Element, hom: &Self::Homomorphism, ) -> Self::Element
summand + lhs * rhs
, where rhs
is mapped into the ring via the homomorphism.Source§impl<I: ?Sized + IntegerRing> CanHomFrom<I> for Complex64Base
impl<I: ?Sized + IntegerRing> CanHomFrom<I> for Complex64Base
Source§type Homomorphism = ()
type Homomorphism = ()
Source§fn has_canonical_hom(&self, _from: &I) -> Option<Self::Homomorphism>
fn has_canonical_hom(&self, _from: &I) -> Option<Self::Homomorphism>
from -> self
, returns Some(data)
, where
data
is additional data that can be used to compute the action of the homomorphism
on ring elements. Otherwise, None
is returned.Source§fn map_in(
&self,
from: &I,
el: <I as RingBase>::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn map_in( &self, from: &I, el: <I as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element
Source§fn map_in_ref(
&self,
from: &I,
el: &<I as RingBase>::Element,
_hom: &Self::Homomorphism,
) -> Self::Element
fn map_in_ref( &self, from: &I, el: &<I as RingBase>::Element, _hom: &Self::Homomorphism, ) -> Self::Element
Source§fn mul_assign_map_in(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
rhs
, and multiplies the result to lhs
.Source§fn mul_assign_map_in_ref(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: &S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
rhs
, taking it by reference, and multiplies the result to lhs
.Source§fn fma_map_in(
&self,
from: &S,
lhs: &Self::Element,
rhs: &S::Element,
summand: Self::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn fma_map_in( &self, from: &S, lhs: &Self::Element, rhs: &S::Element, summand: Self::Element, hom: &Self::Homomorphism, ) -> Self::Element
summand + lhs * rhs
, where rhs
is mapped into the ring via the homomorphism.Source§impl<I> CanHomFrom<RationalFieldBase<I>> for Complex64Base
impl<I> CanHomFrom<RationalFieldBase<I>> for Complex64Base
Source§type Homomorphism = <Complex64Base as CanHomFrom<<I as RingStore>::Type>>::Homomorphism
type Homomorphism = <Complex64Base as CanHomFrom<<I as RingStore>::Type>>::Homomorphism
Source§fn has_canonical_hom(
&self,
from: &RationalFieldBase<I>,
) -> Option<Self::Homomorphism>
fn has_canonical_hom( &self, from: &RationalFieldBase<I>, ) -> Option<Self::Homomorphism>
from -> self
, returns Some(data)
, where
data
is additional data that can be used to compute the action of the homomorphism
on ring elements. Otherwise, None
is returned.Source§fn map_in(
&self,
from: &RationalFieldBase<I>,
el: <RationalFieldBase<I> as RingBase>::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn map_in( &self, from: &RationalFieldBase<I>, el: <RationalFieldBase<I> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element
Source§fn map_in_ref(
&self,
from: &RationalFieldBase<I>,
el: &<RationalFieldBase<I> as RingBase>::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn map_in_ref( &self, from: &RationalFieldBase<I>, el: &<RationalFieldBase<I> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element
Source§fn mul_assign_map_in(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )
rhs
, and multiplies the result to lhs
.Source§fn mul_assign_map_in_ref(
&self,
from: &S,
lhs: &mut Self::Element,
rhs: &S::Element,
hom: &Self::Homomorphism,
)
fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )
rhs
, taking it by reference, and multiplies the result to lhs
.Source§fn fma_map_in(
&self,
from: &S,
lhs: &Self::Element,
rhs: &S::Element,
summand: Self::Element,
hom: &Self::Homomorphism,
) -> Self::Element
fn fma_map_in( &self, from: &S, lhs: &Self::Element, rhs: &S::Element, summand: Self::Element, hom: &Self::Homomorphism, ) -> Self::Element
summand + lhs * rhs
, where rhs
is mapped into the ring via the homomorphism.Source§impl CanIsoFromTo<Complex64Base> for Complex64Base
impl CanIsoFromTo<Complex64Base> for Complex64Base
Source§type Isomorphism = ()
type Isomorphism = ()
Source§fn has_canonical_iso(&self, from: &Self) -> Option<()>
fn has_canonical_iso(&self, from: &Self) -> Option<()>
from -> self
, and this homomorphism
is an isomorphism, returns Some(data)
, where data
is additional data that
can be used to compute preimages under the homomorphism. Otherwise, None
is
returned.Source§impl Clone for Complex64Base
impl Clone for Complex64Base
Source§fn clone(&self) -> Complex64Base
fn clone(&self) -> Complex64Base
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for Complex64Base
impl Debug for Complex64Base
Source§impl DivisibilityRing for Complex64Base
impl DivisibilityRing for Complex64Base
Source§fn checked_left_div(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_left_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
x
such that rhs * x = lhs
, and
returns it if it exists. Read moreSource§type PreparedDivisorData = ()
type PreparedDivisorData = ()
Source§fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
x
such that rhs * x = lhs
.
If you need such an element, consider using DivisibilityRing::checked_left_div()
. Read moreSource§fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool
DivisibilityRing::divides_left()
, but requires a commutative ring.Source§fn checked_div(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div()
, but requires a commutative ring.Source§fn is_unit(&self, x: &Self::Element) -> bool
fn is_unit(&self, x: &Self::Element) -> bool
Source§fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
Source§fn prepare_divisor(&self, _: &Self::Element) -> Self::PreparedDivisorData
fn prepare_divisor(&self, _: &Self::Element) -> Self::PreparedDivisorData
Source§fn checked_left_div_prepared(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_rhs_prep: &Self::PreparedDivisorData,
) -> Option<Self::Element>
fn checked_left_div_prepared( &self, lhs: &Self::Element, rhs: &Self::Element, _rhs_prep: &Self::PreparedDivisorData, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div()
but for a prepared divisor. Read moreSource§fn divides_left_prepared(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_rhs_prep: &Self::PreparedDivisorData,
) -> bool
fn divides_left_prepared( &self, lhs: &Self::Element, rhs: &Self::Element, _rhs_prep: &Self::PreparedDivisorData, ) -> bool
DivisibilityRing::divides_left()
but for a prepared divisor. Read moreSource§fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool
fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool
DivisibilityRing::is_unit()
but for a prepared divisor. Read moreSource§impl EuclideanRing for Complex64Base
impl EuclideanRing for Complex64Base
Source§fn euclidean_div_rem(
&self,
_lhs: Self::Element,
_rhs: &Self::Element,
) -> (Self::Element, Self::Element)
fn euclidean_div_rem( &self, _lhs: Self::Element, _rhs: &Self::Element, ) -> (Self::Element, Self::Element)
Source§fn euclidean_deg(&self, _: &Self::Element) -> Option<usize>
fn euclidean_deg(&self, _: &Self::Element) -> Option<usize>
EuclideanRing
.Source§impl Field for Complex64Base
impl Field for Complex64Base
Source§impl<K, Impl, I> Homomorphism<NumberFieldBase<Impl, I>, Complex64Base> for ComplexEmbedding<K, Impl, I>where
K: RingStore<Type = NumberFieldBase<Impl, I>>,
Impl: RingStore,
Impl::Type: Field + FreeAlgebra,
<Impl::Type as RingExtension>::BaseRing: RingStore<Type = RationalFieldBase<I>>,
I: RingStore,
I::Type: IntegerRing,
impl<K, Impl, I> Homomorphism<NumberFieldBase<Impl, I>, Complex64Base> for ComplexEmbedding<K, Impl, I>where
K: RingStore<Type = NumberFieldBase<Impl, I>>,
Impl: RingStore,
Impl::Type: Field + FreeAlgebra,
<Impl::Type as RingExtension>::BaseRing: RingStore<Type = RationalFieldBase<I>>,
I: RingStore,
I::Type: IntegerRing,
Source§type DomainStore = K
type DomainStore = K
RingStore
used by this object to store the domain ring.Source§type CodomainStore = RingValue<Complex64Base>
type CodomainStore = RingValue<Complex64Base>
RingStore
used by this object to store the codomain ring.Source§fn codomain<'a>(&'a self) -> &'a Self::CodomainStore
fn codomain<'a>(&'a self) -> &'a Self::CodomainStore
Source§fn domain<'a>(&'a self) -> &'a Self::DomainStore
fn domain<'a>(&'a self) -> &'a Self::DomainStore
Source§fn map_ref(
&self,
x: &<NumberFieldBase<Impl, I> as RingBase>::Element,
) -> <Complex64Base as RingBase>::Element
fn map_ref( &self, x: &<NumberFieldBase<Impl, I> as RingBase>::Element, ) -> <Complex64Base as RingBase>::Element
Source§fn map(
&self,
x: <NumberFieldBase<Impl, I> as RingBase>::Element,
) -> <Complex64Base as RingBase>::Element
fn map( &self, x: <NumberFieldBase<Impl, I> as RingBase>::Element, ) -> <Complex64Base as RingBase>::Element
Source§fn mul_assign_map(&self, lhs: &mut Codomain::Element, rhs: Domain::Element)
fn mul_assign_map(&self, lhs: &mut Codomain::Element, rhs: Domain::Element)
Source§fn mul_assign_ref_map(&self, lhs: &mut Codomain::Element, rhs: &Domain::Element)
fn mul_assign_ref_map(&self, lhs: &mut Codomain::Element, rhs: &Domain::Element)
Source§fn mul_map(
&self,
lhs: Codomain::Element,
rhs: Domain::Element,
) -> Codomain::Element
fn mul_map( &self, lhs: Codomain::Element, rhs: Domain::Element, ) -> Codomain::Element
Source§fn fma_map(
&self,
lhs: &Codomain::Element,
rhs: &Domain::Element,
summand: Codomain::Element,
) -> Codomain::Element
fn fma_map( &self, lhs: &Codomain::Element, rhs: &Domain::Element, summand: Codomain::Element, ) -> Codomain::Element
lhs * rhs + summand
, where rhs
is mapped
into the ring via this homomorphism. Read moreSource§fn mul_ref_fst_map(
&self,
lhs: &Codomain::Element,
rhs: Domain::Element,
) -> Codomain::Element
fn mul_ref_fst_map( &self, lhs: &Codomain::Element, rhs: Domain::Element, ) -> Codomain::Element
Source§fn mul_ref_snd_map(
&self,
lhs: Codomain::Element,
rhs: &Domain::Element,
) -> Codomain::Element
fn mul_ref_snd_map( &self, lhs: Codomain::Element, rhs: &Domain::Element, ) -> Codomain::Element
Source§fn mul_ref_map(
&self,
lhs: &Codomain::Element,
rhs: &Domain::Element,
) -> Codomain::Element
fn mul_ref_map( &self, lhs: &Codomain::Element, rhs: &Domain::Element, ) -> Codomain::Element
Source§fn compose<F, PrevDomain: ?Sized + RingBase>(
self,
prev: F,
) -> ComposedHom<PrevDomain, Domain, Codomain, F, Self>where
Self: Sized,
F: Homomorphism<PrevDomain, Domain>,
fn compose<F, PrevDomain: ?Sized + RingBase>(
self,
prev: F,
) -> ComposedHom<PrevDomain, Domain, Codomain, F, Self>where
Self: Sized,
F: Homomorphism<PrevDomain, Domain>,
x -> self.map(prev.map(x))
.Source§fn mul_assign_ref_map_through_hom<First: ?Sized + RingBase, H: Homomorphism<First, Domain>>(
&self,
lhs: &mut Codomain::Element,
rhs: &First::Element,
hom: H,
)
fn mul_assign_ref_map_through_hom<First: ?Sized + RingBase, H: Homomorphism<First, Domain>>( &self, lhs: &mut Codomain::Element, rhs: &First::Element, hom: H, )
Source§fn mul_assign_map_through_hom<First: ?Sized + RingBase, H: Homomorphism<First, Domain>>(
&self,
lhs: &mut Codomain::Element,
rhs: First::Element,
hom: H,
)
fn mul_assign_map_through_hom<First: ?Sized + RingBase, H: Homomorphism<First, Domain>>( &self, lhs: &mut Codomain::Element, rhs: First::Element, hom: H, )
Source§impl PartialEq for Complex64Base
impl PartialEq for Complex64Base
Source§impl PrincipalIdealRing for Complex64Base
impl PrincipalIdealRing for Complex64Base
Source§fn checked_div_min(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
) -> Option<Self::Element>
fn checked_div_min( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>
DivisibilityRing::checked_left_div()
this computes a “quotient” q
of lhs
and rhs
, if it exists. However, we impose the additional constraint
that this quotient be minimal, i.e. there is no q'
with q' | q
properly and
q' * rhs = lhs
. Read moreSource§fn extended_ideal_gen(
&self,
_lhs: &Self::Element,
_rhs: &Self::Element,
) -> (Self::Element, Self::Element, Self::Element)
fn extended_ideal_gen( &self, _lhs: &Self::Element, _rhs: &Self::Element, ) -> (Self::Element, Self::Element, Self::Element)
g
of the ideal (lhs, rhs)
as g = s * lhs + t * rhs
. Read moreSource§fn annihilator(&self, val: &Self::Element) -> Self::Element
fn annihilator(&self, val: &Self::Element) -> Self::Element
Source§fn create_elimination_matrix(
&self,
a: &Self::Element,
b: &Self::Element,
) -> ([Self::Element; 4], Self::Element)
fn create_elimination_matrix( &self, a: &Self::Element, b: &Self::Element, ) -> ([Self::Element; 4], Self::Element)
A
of unit determinant such that A * (a, b)^T = (d, 0)
.
Returns (A, d)
.Source§fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
g
of the ideal (lhs, rhs) = (g)
, also known as greatest
common divisor. Read moreSource§fn ideal_gen_with_controller<Controller>(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_: Controller,
) -> Self::Elementwhere
Controller: ComputationController,
fn ideal_gen_with_controller<Controller>(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
_: Controller,
) -> Self::Elementwhere
Controller: ComputationController,
PrincipalIdealRing::ideal_gen()
, this computes a generator of the ideal (lhs, rhs)
.
However, it additionally accepts a ComputationController
to customize the performed
computation.Source§impl RingBase for Complex64Base
impl RingBase for Complex64Base
Source§type Element = Complex64El
type Element = Complex64El
fn clone_el(&self, val: &Self::Element) -> Self::Element
fn add_assign( &self, Complex64El: &mut Self::Element, Complex64El: Self::Element, )
fn negate_inplace(&self, Complex64El: &mut Self::Element)
fn mul_assign( &self, Complex64El: &mut Self::Element, Complex64El: Self::Element, )
fn from_int(&self, value: i32) -> Self::Element
fn eq_el(&self, _: &Self::Element, _: &Self::Element) -> bool
Source§fn pow_gen<R: IntegerRingStore>(
&self,
x: Self::Element,
power: &El<R>,
integers: R,
) -> Self::Elementwhere
R::Type: IntegerRing,
fn pow_gen<R: IntegerRingStore>(
&self,
x: Self::Element,
power: &El<R>,
integers: R,
) -> Self::Elementwhere
R::Type: IntegerRing,
x
to the power of an arbitrary, nonnegative integer given by
a custom integer ring implementation. Read moreSource§fn is_commutative(&self) -> bool
fn is_commutative(&self) -> bool
a * b = b * a
for all elements a, b
.
Note that addition is assumed to be always commutative.Source§fn is_noetherian(&self) -> bool
fn is_noetherian(&self) -> bool
Source§fn is_approximate(&self) -> bool
fn is_approximate(&self) -> bool
f32
or
f64
, to represent real or complex numbers. Read moreSource§fn dbg_within<'a>(
&self,
Complex64El: &Self::Element,
out: &mut Formatter<'a>,
env: EnvBindingStrength,
) -> Result
fn dbg_within<'a>( &self, Complex64El: &Self::Element, out: &mut Formatter<'a>, env: EnvBindingStrength, ) -> Result
value
to out
, taking into account the possible context
to place parenthesis as needed. Read moreSource§fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>where
I::Type: IntegerRing,
ZZ
. Read morefn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn zero(&self) -> Self::Element
fn one(&self) -> Self::Element
fn neg_one(&self) -> Self::Element
fn is_zero(&self, value: &Self::Element) -> bool
fn is_one(&self, value: &Self::Element) -> bool
fn is_neg_one(&self, value: &Self::Element) -> bool
Source§fn fma(
&self,
lhs: &Self::Element,
rhs: &Self::Element,
summand: Self::Element,
) -> Self::Element
fn fma( &self, lhs: &Self::Element, rhs: &Self::Element, summand: Self::Element, ) -> Self::Element
summand + lhs * rhs
.fn square(&self, value: &mut Self::Element)
fn negate(&self, value: Self::Element) -> Self::Element
fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32)
fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element
fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element
Source§fn fma_int(
&self,
lhs: &Self::Element,
rhs: i32,
summand: Self::Element,
) -> Self::Element
fn fma_int( &self, lhs: &Self::Element, rhs: i32, summand: Self::Element, ) -> Self::Element
summand + lhs * rhs
.Source§fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)
lhs := rhs - lhs
.Source§fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)
lhs := rhs - lhs
.fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element
fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element
fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element
fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element
Source§impl RingExtension for Complex64Base
impl RingExtension for Complex64Base
Source§fn from(&self, x: El<Self::BaseRing>) -> Self::Element
fn from(&self, x: El<Self::BaseRing>) -> Self::Element
Source§fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)
fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)
lhs := lhs * rhs
, where rhs
is mapped into this
ring via RingExtension::from_ref()
. Note that this may be
faster than self.mul_assign(lhs, self.from_ref(rhs))
.Source§fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element
fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element
fn fma_base( &self, lhs: &Self::Element, rhs: &El<Self::BaseRing>, summand: Self::Element, ) -> Self::Element
Source§fn mul_assign_base_through_hom<S: ?Sized + RingBase, H: Homomorphism<S, <Self::BaseRing as RingStore>::Type>>(
&self,
lhs: &mut Self::Element,
rhs: &S::Element,
hom: H,
)
fn mul_assign_base_through_hom<S: ?Sized + RingBase, H: Homomorphism<S, <Self::BaseRing as RingStore>::Type>>( &self, lhs: &mut Self::Element, rhs: &S::Element, hom: H, )
lhs := lhs * rhs
, where rhs
is mapped into this ring
via the given homomorphism, followed by the inclusion (as specified by
RingExtension::from_ref()
). Read moreimpl Copy for Complex64Base
impl Domain for Complex64Base
impl StructuralPartialEq for Complex64Base
Auto Trait Implementations§
impl Freeze for Complex64Base
impl RefUnwindSafe for Complex64Base
impl Send for Complex64Base
impl Sync for Complex64Base
impl Unpin for Complex64Base
impl UnwindSafe for Complex64Base
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<R> ComputeInnerProduct for R
impl<R> ComputeInnerProduct for R
Source§default fn inner_product_ref_fst<'a, I>(
&self,
els: I,
) -> <R as RingBase>::Element
default fn inner_product_ref_fst<'a, I>( &self, els: I, ) -> <R as RingBase>::Element
unstable-enable
only.sum_i lhs[i] * rhs[i]
.Source§default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
unstable-enable
only.sum_i lhs[i] * rhs[i]
.Source§impl<R, S> CooleyTuckeyButterfly<S> for R
impl<R, S> CooleyTuckeyButterfly<S> for R
Source§default fn butterfly<V, H>(
&self,
hom: H,
values: &mut V,
twiddle: &<S as RingBase>::Element,
i1: usize,
i2: usize,
)
default fn butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
(values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2])
. Read moreSource§default fn butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
(x, y) := (x + twiddle * y, x - twiddle * y)
. Read moreSource§default fn inv_butterfly<V, H>(
&self,
hom: H,
values: &mut V,
twiddle: &<S as RingBase>::Element,
i1: usize,
i2: usize,
)
default fn inv_butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
(values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle)
Read moreSource§default fn inv_butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn inv_butterfly_new<H>(
hom: H,
x: &mut <R as RingBase>::Element,
y: &mut <R as RingBase>::Element,
twiddle: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
(x, y) := (x + y, (x - y) * twiddle)
Read moreSource§default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
CooleyTuckeyButterfly::butterfly_new()
that the inputs are in this form.Source§default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
CooleyTuckeyButterfly::inv_butterfly_new()
that the inputs are in this form.Source§impl<R, S> CooleyTukeyRadix3Butterfly<S> for R
impl<R, S> CooleyTukeyRadix3Butterfly<S> for R
Source§default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
Available on crate feature unstable-enable
only.
default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)
unstable-enable
only.Possibly pre-processes elements before the FFT starts. Here you can bring ring element
into a certain form, and assume during CooleyTukeyRadix3Butterfly::butterfly()
that the inputs are in this form.
Source§default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
Available on crate feature unstable-enable
only.
default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)
unstable-enable
only.Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element
into a certain form, and assume during CooleyTukeyRadix3Butterfly::inv_butterfly()
that the inputs are in this form.
Source§default fn butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr_z_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr_z_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
unstable-enable
only.(a, b, c) := (a + t b + t^2 c, a + t z b + t^2 z^2 c, a + t z^2 b + t^2 z c)
. Read moreSource§default fn inv_butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
default fn inv_butterfly<H>(
hom: H,
a: &mut <R as RingBase>::Element,
b: &mut <R as RingBase>::Element,
c: &mut <R as RingBase>::Element,
z: &<S as RingBase>::Element,
t: &<S as RingBase>::Element,
t_sqr: &<S as RingBase>::Element,
)where
H: Homomorphism<S, R>,
unstable-enable
only.(a, b, c) := (a + b + c, t (a + z^2 b + z c), t^2 (a + z b + z^2 c))
. Read moreSource§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<R> KaratsubaHint for R
impl<R> KaratsubaHint for R
Source§default fn karatsuba_threshold(&self) -> usize
default fn karatsuba_threshold(&self) -> usize
unstable-enable
only.KaratsubaAlgorithm
will use the Karatsuba algorithm. Read moreSource§impl<R> LinSolveRing for Rwhere
R: PrincipalIdealRing + ?Sized,
impl<R> LinSolveRing for Rwhere
R: PrincipalIdealRing + ?Sized,
Source§default fn solve_right<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>,
rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>,
out: SubmatrixMut<'_, V3, <R as RingBase>::Element>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<<R as RingBase>::Element>,
V2: AsPointerToSlice<<R as RingBase>::Element>,
V3: AsPointerToSlice<<R as RingBase>::Element>,
A: Allocator,
default fn solve_right<V1, V2, V3, A>(
&self,
lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>,
rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>,
out: SubmatrixMut<'_, V3, <R as RingBase>::Element>,
allocator: A,
) -> SolveResultwhere
V1: AsPointerToSlice<<R as RingBase>::Element>,
V2: AsPointerToSlice<<R as RingBase>::Element>,
V3: AsPointerToSlice<<R as RingBase>::Element>,
A: Allocator,
Source§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R> StrassenHint for R
impl<R> StrassenHint for R
Source§default fn strassen_threshold(&self) -> usize
default fn strassen_threshold(&self) -> usize
unstable-enable
only.StrassenAlgorithm
will use the Strassen algorithm. Read more