DirectPowerRingBase

Struct DirectPowerRingBase 

Source
pub struct DirectPowerRingBase<R: RingStore, const N: usize> { /* private fields */ }
Available on crate feature unstable-enable only.
Expand description

The N-fold direct product ring R x ... x R.

Currently, this is a quite naive implementation, which just repeats operations along each component. In the future, this might become an entrypoint for vectorization or similar. Hence, it might remain unstable for a while.

§Availability

This API is marked as unstable and is only available when the unstable-enable crate feature is enabled. This comes with no stability guarantees, and could be changed or removed at any time.

Trait Implementations§

Source§

impl<S: RingStore, R: RingStore, const N: usize> CanHomFrom<DirectPowerRingBase<S, N>> for DirectPowerRingBase<R, N>
where R::Type: CanHomFrom<S::Type>,

Source§

type Homomorphism = <<R as RingStore>::Type as CanHomFrom<<S as RingStore>::Type>>::Homomorphism

Data required to compute the action of the canonical homomorphism on ring elements.
Source§

fn has_canonical_hom( &self, from: &DirectPowerRingBase<S, N>, ) -> Option<Self::Homomorphism>

If there is a canonical homomorphism from -> self, returns Some(data), where data is additional data that can be used to compute the action of the homomorphism on ring elements. Otherwise, None is returned.
Source§

fn map_in( &self, from: &DirectPowerRingBase<S, N>, el: <DirectPowerRingBase<S, N> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element

Evaluates the homomorphism.
Source§

fn map_in_ref( &self, from: &DirectPowerRingBase<S, N>, el: &<DirectPowerRingBase<S, N> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element

Evaluates the homomorphism, taking the element by reference.
Source§

fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )

Evaluates the homomorphism on rhs, and multiplies the result to lhs.
Source§

fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )

Evaluates the homomorphism on rhs, taking it by reference, and multiplies the result to lhs.
Source§

fn fma_map_in( &self, from: &S, lhs: &Self::Element, rhs: &S::Element, summand: Self::Element, hom: &Self::Homomorphism, ) -> Self::Element

Fused-multiply-add. Computes summand + lhs * rhs, where rhs is mapped into the ring via the homomorphism.
Source§

impl<S: RingStore, R: RingStore, const N: usize> CanIsoFromTo<DirectPowerRingBase<S, N>> for DirectPowerRingBase<R, N>
where R::Type: CanIsoFromTo<S::Type>,

Source§

type Isomorphism = <<R as RingStore>::Type as CanIsoFromTo<<S as RingStore>::Type>>::Isomorphism

Data required to compute a preimage under the canonical homomorphism.
Source§

fn has_canonical_iso( &self, from: &DirectPowerRingBase<S, N>, ) -> Option<Self::Isomorphism>

If there is a canonical homomorphism from -> self, and this homomorphism is an isomorphism, returns Some(data), where data is additional data that can be used to compute preimages under the homomorphism. Otherwise, None is returned.
Source§

fn map_out( &self, from: &DirectPowerRingBase<S, N>, el: Self::Element, iso: &Self::Isomorphism, ) -> <DirectPowerRingBase<S, N> as RingBase>::Element

Computes the preimage of el under the canonical homomorphism from -> self.
Source§

impl<R, const N: usize> Clone for DirectPowerRingBase<R, N>
where R: Clone + RingStore,

Source§

fn clone(&self) -> Self

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 1>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 1])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 1])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 16>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 16])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 16])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 2>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 2])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 2])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 3>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 3])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 3])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 4>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 4])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 4])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 5>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 5])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 5])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 6>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 6])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 6])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 7>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 7])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 7])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl CooleyTuckeyButterfly<ZnFastmulBase> for DirectPowerRingBase<Zn, 8>

Source§

fn butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

fn inv_butterfly_new<H: Homomorphism<ZnFastmulBase, Self>>( hom: H, x: &mut Self::Element, y: &mut Self::Element, twiddle: &ZnFastmulEl, )

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

fn prepare_for_fft(&self, value: &mut [ZnEl; 8])

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

fn prepare_for_inv_fft(&self, value: &mut [ZnEl; 8])

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

fn butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

fn inv_butterfly<V: VectorViewMut<Self::Element>, H: Homomorphism<S, Self>>( &self, hom: H, values: &mut V, twiddle: &S::Element, i1: usize, i2: usize, )

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

impl<R: RingStore, const N: usize> DivisibilityRing for DirectPowerRingBase<R, N>

Source§

type PreparedDivisorData = [<<R as RingStore>::Type as DivisibilityRing>::PreparedDivisorData; N]

Additional data associated to a fixed ring element that can be used to speed up division by this ring element. Read more
Source§

fn checked_left_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>

Checks whether there is an element x such that rhs * x = lhs, and returns it if it exists. Read more
Source§

fn prepare_divisor(&self, el: &Self::Element) -> Self::PreparedDivisorData

“Prepares” an element of this ring for division. Read more
Source§

fn checked_left_div_prepared( &self, lhs: &Self::Element, rhs: &Self::Element, rhs_prep: &Self::PreparedDivisorData, ) -> Option<Self::Element>

Same as DivisibilityRing::checked_left_div() but for a prepared divisor. Read more
Source§

fn divides_left_prepared( &self, lhs: &Self::Element, rhs: &Self::Element, rhs_prep: &Self::PreparedDivisorData, ) -> bool

Same as DivisibilityRing::divides_left() but for a prepared divisor. Read more
Source§

fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

Returns whether there is an element x such that rhs * x = lhs. If you need such an element, consider using DivisibilityRing::checked_left_div(). Read more
Source§

fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

Same as DivisibilityRing::divides_left(), but requires a commutative ring.
Source§

fn checked_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>

Same as DivisibilityRing::checked_left_div(), but requires a commutative ring.
Source§

fn is_unit(&self, x: &Self::Element) -> bool

Returns whether the given element is a unit, i.e. has an inverse.
Source§

fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
where I: Iterator<Item = &'a Self::Element>, Self: 'a,

Function that computes a “balancing” factor of a sequence of ring elements. The only use of the balancing factor is to increase performance, in particular, dividing all elements in the sequence by this factor should make them “smaller” resp. cheaper to process. Read more
Source§

fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool

Same as DivisibilityRing::is_unit() but for a prepared divisor. Read more
Source§

fn invert(&self, el: &Self::Element) -> Option<Self::Element>

If the given element is a unit, returns its inverse, otherwise None. Read more
Source§

impl<R: RingStore, const N: usize> FiniteRing for DirectPowerRingBase<R, N>
where R::Type: FiniteRing,

Source§

type ElementsIter<'a> = MultiProduct<<<R as RingStore>::Type as FiniteRing>::ElementsIter<'a>, DirectPowerRingElCreator<'a, R, N>, CloneRingEl<&'a R>, [<<R as RingStore>::Type as RingBase>::Element; N]> where Self: 'a

Type of the iterator returned by FiniteRing::elements(), which should iterate over all elements of the ring.
Source§

fn elements<'a>(&'a self) -> Self::ElementsIter<'a>

Returns an iterator over all elements of this ring. The order is not specified.
Source§

fn random_element<G: FnMut() -> u64>( &self, rng: G, ) -> <Self as RingBase>::Element

Returns a uniformly random element from this ring, using the randomness provided by rng.
Source§

fn size<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
where I::Type: IntegerRing,

Returns the number of elements in this ring, if it fits within the given integer ring.
Source§

impl<R: RingStore, const N: usize> FiniteRingSpecializable for DirectPowerRingBase<R, N>

Source§

fn specialize<O: FiniteRingOperation<Self>>(op: O) -> O::Output

Available on crate feature unstable-enable only.
Source§

fn is_finite_ring() -> bool

Available on crate feature unstable-enable only.
Source§

impl<R: RingStore, const N: usize> HashableElRing for DirectPowerRingBase<R, N>
where R::Type: HashableElRing,

Source§

fn hash<H: Hasher>(&self, el: &Self::Element, h: &mut H)

Hashes the given ring element.
Source§

impl<R: RingStore, const N: usize> PartialEq for DirectPowerRingBase<R, N>

Source§

fn eq(&self, other: &Self) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<R: RingStore, const N: usize> RingBase for DirectPowerRingBase<R, N>

Source§

type Element = [<<R as RingStore>::Type as RingBase>::Element; N]

Type of elements of the ring
Source§

fn clone_el(&self, val: &Self::Element) -> Self::Element

Source§

fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Source§

fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Source§

fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Source§

fn negate_inplace(&self, lhs: &mut Self::Element)

Source§

fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Source§

fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Source§

fn zero(&self) -> Self::Element

Source§

fn one(&self) -> Self::Element

Source§

fn neg_one(&self) -> Self::Element

Source§

fn from_int(&self, value: i32) -> Self::Element

Source§

fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

Source§

fn is_zero(&self, value: &Self::Element) -> bool

Source§

fn is_one(&self, value: &Self::Element) -> bool

Source§

fn is_neg_one(&self, value: &Self::Element) -> bool

Source§

fn is_commutative(&self) -> bool

Returns whether the ring is commutative, i.e. a * b = b * a for all elements a, b. Note that addition is assumed to be always commutative.
Source§

fn is_noetherian(&self) -> bool

Returns whether the ring is noetherian, i.e. every ideal is finitely generated. Read more
Source§

fn is_approximate(&self) -> bool

Returns whether this ring computes with approximations to elements. This would usually be the case for rings that are based on f32 or f64, to represent real or complex numbers. Read more
Source§

fn dbg_within<'a>( &self, value: &Self::Element, out: &mut Formatter<'a>, _env: EnvBindingStrength, ) -> Result

Writes a human-readable representation of value to out, taking into account the possible context to place parenthesis as needed. Read more
Source§

fn square(&self, value: &mut Self::Element)

Source§

fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Source§

fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32)

Source§

fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Computes lhs := rhs - lhs.
Source§

fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Computes lhs := rhs - lhs.
Source§

fn sum<I>(&self, els: I) -> Self::Element
where I: IntoIterator<Item = Self::Element>,

Sums the elements given by the iterator. Read more
Source§

fn prod<I>(&self, els: I) -> Self::Element
where I: IntoIterator<Item = Self::Element>,

Computes the product of the elements given by the iterator. Read more
Source§

fn characteristic<I: RingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
where I::Type: IntegerRing,

Returns the characteristic of this ring as an element of the given implementation of ZZ. Read more
Source§

fn fma( &self, lhs: &Self::Element, rhs: &Self::Element, summand: Self::Element, ) -> Self::Element

Fused-multiply-add. This computes summand + lhs * rhs.
Source§

fn dbg<'a>(&self, value: &Self::Element, out: &mut Formatter<'a>) -> Result

Writes a human-readable representation of value to out. Read more
Source§

fn negate(&self, value: Self::Element) -> Self::Element

Source§

fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element

Source§

fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element

Source§

fn fma_int( &self, lhs: &Self::Element, rhs: i32, summand: Self::Element, ) -> Self::Element

Fused-multiply-add with an integer. This computes summand + lhs * rhs.
Source§

fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn pow_gen<R: RingStore>( &self, x: Self::Element, power: &El<R>, integers: R, ) -> Self::Element
where R::Type: IntegerRing,

Raises x to the power of an arbitrary, nonnegative integer given by a custom integer ring implementation. Read more
Source§

impl<R: RingStore, const N: usize> RingExtension for DirectPowerRingBase<R, N>

Source§

type BaseRing = R

Type of the base ring; Read more
Source§

fn base_ring<'a>(&'a self) -> &'a Self::BaseRing

Returns a reference to the base ring.
Source§

fn from(&self, x: El<Self::BaseRing>) -> Self::Element

Maps an element of the base ring into this ring. Read more
Source§

fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element

Maps an element of the base ring (given as reference) into this ring.
Source§

fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)

Computes lhs := lhs * rhs, where rhs is mapped into this ring via RingExtension::from_ref(). Note that this may be faster than self.mul_assign(lhs, self.from_ref(rhs)).
Source§

fn mul_assign_base_through_hom<S: ?Sized + RingBase, H: Homomorphism<S, R::Type>>( &self, lhs: &mut Self::Element, rhs: &S::Element, hom: H, )

Computes lhs := lhs * rhs, where rhs is mapped into this ring via the given homomorphism, followed by the inclusion (as specified by RingExtension::from_ref()). Read more
Source§

fn fma_base( &self, lhs: &Self::Element, rhs: &El<Self::BaseRing>, summand: Self::Element, ) -> Self::Element

Source§

impl<R: RingStore, const N: usize> SerializableElementRing for DirectPowerRingBase<R, N>

Source§

fn deserialize<'de, D>( &self, deserializer: D, ) -> Result<Self::Element, D::Error>
where D: Deserializer<'de>,

Available on crate feature unstable-enable only.
Deserializes an element of this ring from the given deserializer.
Source§

fn serialize<S>( &self, el: &Self::Element, serializer: S, ) -> Result<S::Ok, S::Error>
where S: Serializer,

Available on crate feature unstable-enable only.
Serializes an element of this ring to the given serializer.
Source§

impl<R, const N: usize> Copy for DirectPowerRingBase<R, N>
where R: Copy + RingStore, El<R>: Copy,

Auto Trait Implementations§

§

impl<R, const N: usize> Freeze for DirectPowerRingBase<R, N>
where R: Freeze,

§

impl<R, const N: usize> RefUnwindSafe for DirectPowerRingBase<R, N>
where R: RefUnwindSafe,

§

impl<R, const N: usize> Send for DirectPowerRingBase<R, N>
where R: Send,

§

impl<R, const N: usize> Sync for DirectPowerRingBase<R, N>
where R: Sync,

§

impl<R, const N: usize> Unpin for DirectPowerRingBase<R, N>
where R: Unpin,

§

impl<R, const N: usize> UnwindSafe for DirectPowerRingBase<R, N>
where R: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<R> ComputeInnerProduct for R
where R: RingBase + ?Sized,

Source§

default fn inner_product_ref_fst<'a, I>( &self, els: I, ) -> <R as RingBase>::Element
where I: Iterator<Item = (&'a <R as RingBase>::Element, <R as RingBase>::Element)>, <R as RingBase>::Element: 'a,

Available on crate feature unstable-enable only.
Computes the inner product sum_i lhs[i] * rhs[i].
Source§

default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
where I: Iterator<Item = (&'a <R as RingBase>::Element, &'a <R as RingBase>::Element)>, <R as RingBase>::Element: 'a,

Available on crate feature unstable-enable only.
Computes the inner product sum_i lhs[i] * rhs[i].
Source§

default fn inner_product<I>(&self, els: I) -> <R as RingBase>::Element
where I: Iterator<Item = (<R as RingBase>::Element, <R as RingBase>::Element)>,

Available on crate feature unstable-enable only.
Computes the inner product sum_i lhs[i] * rhs[i].
Source§

impl<R, S> CooleyTuckeyButterfly<S> for R
where S: RingBase + ?Sized, R: RingBase + ?Sized,

Source§

default fn butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
where V: VectorViewMut<<R as RingBase>::Element>, H: Homomorphism<S, R>,

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2]). Read more
Source§

default fn butterfly_new<H>( hom: H, x: &mut <R as RingBase>::Element, y: &mut <R as RingBase>::Element, twiddle: &<S as RingBase>::Element, )
where H: Homomorphism<S, R>,

Should compute (x, y) := (x + twiddle * y, x - twiddle * y). Read more
Source§

default fn inv_butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
where V: VectorViewMut<<R as RingBase>::Element>, H: Homomorphism<S, R>,

👎Deprecated
Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle) Read more
Source§

default fn inv_butterfly_new<H>( hom: H, x: &mut <R as RingBase>::Element, y: &mut <R as RingBase>::Element, twiddle: &<S as RingBase>::Element, )
where H: Homomorphism<S, R>,

Should compute (x, y) := (x + y, (x - y) * twiddle) Read more
Source§

default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::butterfly_new() that the inputs are in this form.
Source§

default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTuckeyButterfly::inv_butterfly_new() that the inputs are in this form.
Source§

impl<R, S> CooleyTukeyRadix3Butterfly<S> for R
where R: RingBase + ?Sized, S: RingBase + ?Sized,

Source§

default fn prepare_for_fft(&self, _value: &mut <R as RingBase>::Element)

Available on crate feature unstable-enable only.

Possibly pre-processes elements before the FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTukeyRadix3Butterfly::butterfly() that the inputs are in this form.

Source§

default fn prepare_for_inv_fft(&self, _value: &mut <R as RingBase>::Element)

Available on crate feature unstable-enable only.

Possibly pre-processes elements before the inverse FFT starts. Here you can bring ring element into a certain form, and assume during CooleyTukeyRadix3Butterfly::inv_butterfly() that the inputs are in this form.

Source§

default fn butterfly<H>( hom: H, a: &mut <R as RingBase>::Element, b: &mut <R as RingBase>::Element, c: &mut <R as RingBase>::Element, z: &<S as RingBase>::Element, t: &<S as RingBase>::Element, t_sqr_z_sqr: &<S as RingBase>::Element, )
where H: Homomorphism<S, R>,

Available on crate feature unstable-enable only.
Should compute (a, b, c) := (a + t b + t^2 c, a + t z b + t^2 z^2 c, a + t z^2 b + t^2 z c). Read more
Source§

default fn inv_butterfly<H>( hom: H, a: &mut <R as RingBase>::Element, b: &mut <R as RingBase>::Element, c: &mut <R as RingBase>::Element, z: &<S as RingBase>::Element, t: &<S as RingBase>::Element, t_sqr: &<S as RingBase>::Element, )
where H: Homomorphism<S, R>,

Available on crate feature unstable-enable only.
Should compute (a, b, c) := (a + b + c, t (a + z^2 b + z c), t^2 (a + z b + z^2 c)). Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<R> KaratsubaHint for R
where R: RingBase + ?Sized,

Source§

default fn karatsuba_threshold(&self) -> usize

Available on crate feature unstable-enable only.
Define a threshold from which on KaratsubaAlgorithm will use the Karatsuba algorithm. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<R> StrassenHint for R
where R: RingBase + ?Sized,

Source§

default fn strassen_threshold(&self) -> usize

Available on crate feature unstable-enable only.
Define a threshold from which on StrassenAlgorithm will use the Strassen algorithm. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<R> SelfIso for R
where R: CanIsoFromTo<R> + ?Sized,