Struct SparsePolyRingBase

Source
pub struct SparsePolyRingBase<R: RingStore> { /* private fields */ }
Expand description

The univariate polynomial ring R[X]. Polynomials are stored as sparse vectors of coefficients, thus giving improved performance in the case that most coefficients are zero.

§Example

 
let ZZ = StaticRing::<i32>::RING;
let P = SparsePolyRing::new(ZZ, "X");
let x10_plus_1 = P.add(P.pow(P.indeterminate(), 10), P.int_hom().map(1));
let power = P.pow(x10_plus_1, 10);
assert_eq!(0, *P.coefficient_at(&power, 1));

This ring has a CanIsoFromTo to dense_poly::DensePolyRingBase.

 
let ZZ = StaticRing::<i32>::RING;
let P = SparsePolyRing::new(ZZ, "X");
let P2 = DensePolyRing::new(ZZ, "X");
let high_power_of_x = P.pow(P.indeterminate(), 10);
assert_el_eq!(P2, P2.pow(P2.indeterminate(), 10), &P.can_iso(&P2).unwrap().map(high_power_of_x));

Trait Implementations§

Source§

impl<R, P> CanHomFrom<P> for SparsePolyRingBase<R>

Source§

type Homomorphism = <<<SparsePolyRingBase<R> as RingExtension>::BaseRing as RingStore>::Type as CanHomFrom<<<P as RingExtension>::BaseRing as RingStore>::Type>>::Homomorphism

Source§

fn has_canonical_hom(&self, from: &P) -> Option<Self::Homomorphism>

Source§

fn map_in( &self, from: &P, el: P::Element, hom: &Self::Homomorphism, ) -> Self::Element

Source§

fn map_in_ref( &self, from: &S, el: &S::Element, hom: &Self::Homomorphism, ) -> Self::Element

Source§

fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )

Source§

fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )

Source§

impl<R1, R2> CanHomFrom<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
where R1: RingStore, R2: RingStore, R2::Type: CanHomFrom<R1::Type>,

Source§

type Homomorphism = <<R2 as RingStore>::Type as CanHomFrom<<R1 as RingStore>::Type>>::Homomorphism

Source§

fn has_canonical_hom( &self, from: &SparsePolyRingBase<R1>, ) -> Option<Self::Homomorphism>

Source§

fn map_in_ref( &self, from: &SparsePolyRingBase<R1>, el: &SparsePolyRingEl<R1>, hom: &Self::Homomorphism, ) -> Self::Element

Source§

fn map_in( &self, from: &SparsePolyRingBase<R1>, el: <SparsePolyRingBase<R1> as RingBase>::Element, hom: &Self::Homomorphism, ) -> Self::Element

Source§

fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )

Source§

fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )

Source§

impl<R, P> CanIsoFromTo<P> for SparsePolyRingBase<R>

Source§

impl<R1, R2> CanIsoFromTo<SparsePolyRingBase<R1>> for SparsePolyRingBase<R2>
where R1: RingStore, R2: RingStore, R2::Type: CanIsoFromTo<R1::Type>,

Source§

type Isomorphism = <<R2 as RingStore>::Type as CanIsoFromTo<<R1 as RingStore>::Type>>::Isomorphism

Source§

fn has_canonical_iso( &self, from: &SparsePolyRingBase<R1>, ) -> Option<Self::Isomorphism>

Source§

fn map_out( &self, from: &SparsePolyRingBase<R1>, el: Self::Element, iso: &Self::Isomorphism, ) -> SparsePolyRingEl<R1>

Source§

impl<R: RingStore + Clone> Clone for SparsePolyRingBase<R>

Source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<R> DivisibilityRing for SparsePolyRingBase<R>

Source§

fn checked_left_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>

Checks whether there is an element x such that rhs * x = lhs, and returns it if it exists. Read more
Source§

type PreparedDivisorData = ()

Additional data associated to a fixed ring element that can be used to speed up division by this ring element. Read more
Source§

fn divides_left(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

Returns whether there is an element x such that rhs * x = lhs. If you need such an element, consider using DivisibilityRing::checked_left_div(). Read more
Source§

fn divides(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

Same as DivisibilityRing::divides_left(), but requires a commutative ring.
Source§

fn checked_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>

Same as DivisibilityRing::checked_left_div(), but requires a commutative ring.
Source§

fn is_unit(&self, x: &Self::Element) -> bool

Returns whether the given element is a unit, i.e. has an inverse.
Source§

fn balance_factor<'a, I>(&self, _elements: I) -> Option<Self::Element>
where I: Iterator<Item = &'a Self::Element>, Self: 'a,

Function that computes a “balancing” factor of a sequence of ring elements. The only use of the balancing factor is to increase performance, in particular, dividing all elements in the sequence by this factor should make them “smaller” resp. cheaper to process. Read more
Source§

fn prepare_divisor(&self, x: Self::Element) -> PreparedDivisor<Self>

“Prepares” an element of this ring for division. Read more
Source§

fn checked_left_div_prepared( &self, lhs: &Self::Element, rhs: &PreparedDivisor<Self>, ) -> Option<Self::Element>

Same as DivisibilityRing::checked_left_div() but for a prepared divisor. Read more
Source§

fn divides_left_prepared( &self, lhs: &Self::Element, rhs: &PreparedDivisor<Self>, ) -> bool

Same as DivisibilityRing::divides_left() but for a prepared divisor. Read more
Source§

fn is_unit_prepared(&self, x: &PreparedDivisor<Self>) -> bool

Same as DivisibilityRing::is_unit() but for a prepared divisor. Read more
Source§

fn invert(&self, el: &Self::Element) -> Option<Self::Element>

If the given element is a unit, returns its inverse, otherwise None. Read more
Source§

impl<R> EuclideanRing for SparsePolyRingBase<R>

Source§

fn euclidean_div_rem( &self, lhs: Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element)

Computes euclidean division with remainder. Read more
Source§

fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>

Defines how “small” an element is. For details, see EuclideanRing.
Source§

fn euclidean_div( &self, lhs: Self::Element, rhs: &Self::Element, ) -> Self::Element

Computes euclidean division without remainder. Read more
Source§

fn euclidean_rem( &self, lhs: Self::Element, rhs: &Self::Element, ) -> Self::Element

Computes only the remainder of euclidean division. Read more
Source§

impl<R> PartialEq for SparsePolyRingBase<R>
where R: RingStore,

Source§

fn eq(&self, other: &Self) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<R> PolyRing for SparsePolyRingBase<R>
where R: RingStore,

Source§

type TermsIterator<'a> = TermIterator<'a, R> where Self: 'a

Source§

fn indeterminate(&self) -> Self::Element

Returns the indeterminate X generating this polynomial ring.
Source§

fn terms<'a>(&'a self, f: &'a Self::Element) -> TermIterator<'a, R>

Returns all the nonzero terms of the given polynomial. Read more
Source§

fn add_assign_from_terms<I>(&self, lhs: &mut Self::Element, rhs: I)
where I: IntoIterator<Item = (El<Self::BaseRing>, usize)>,

Adds the given terms to the given polynomial.
Source§

fn coefficient_at<'a>( &'a self, f: &'a Self::Element, i: usize, ) -> &'a El<Self::BaseRing>

Returns the coefficient of f that corresponds to the monomial X^i.
Source§

fn degree(&self, f: &Self::Element) -> Option<usize>

Returns the degree of the polynomial f, i.e. the value d such that f can be written as f(X) = a0 + a1 * X + a2 * X^2 + ... + ad * X^d. Returns None if f is zero.
Source§

fn div_rem_monic( &self, lhs: Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element)

Compute the euclidean division by a monic polynomial rhs. Read more
Source§

fn mul_assign_monomial(&self, lhs: &mut Self::Element, rhs_power: usize)

Multiplies the given polynomial with X^rhs_power.
Source§

fn map_terms<P, H>(&self, from: &P, el: &P::Element, hom: H) -> Self::Element
where P: ?Sized + PolyRing, H: Homomorphism<<P::BaseRing as RingStore>::Type, <Self::BaseRing as RingStore>::Type>,

Source§

fn balance_poly(&self, f: &mut Self::Element) -> Option<El<Self::BaseRing>>

Possibly divides all coefficients of the polynomial by a common factor, in order to make them “smaller”. Read more
Source§

fn evaluate<R, H>( &self, f: &Self::Element, value: &R::Element, hom: H, ) -> R::Element
where R: ?Sized + RingBase, H: Homomorphism<<Self::BaseRing as RingStore>::Type, R>,

Evaluates the given polynomial at the given values. Read more
Source§

impl<R> PrincipalIdealRing for SparsePolyRingBase<R>

Source§

fn checked_div_min( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>

Similar to DivisibilityRing::checked_left_div() this computes a “quotient” q of lhs and rhs, if it exists. However, we impose the additional constraint that this quotient be minimal, i.e. there is no q' with q' | q properly and q' * rhs = lhs. Read more
Source§

fn extended_ideal_gen( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element, Self::Element)

Computes a Bezout identity for the generator g of the ideal (lhs, rhs) as g = s * lhs + t * rhs. Read more
Source§

fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Computes a generator g of the ideal (lhs, rhs) = (g), also known as greatest common divisor. Read more
Source§

fn annihilator(&self, val: &Self::Element) -> Self::Element

Returns the (w.r.t. divisibility) smallest element x such that x * val = 0. Read more
Source§

fn create_elimination_matrix( &self, a: &Self::Element, b: &Self::Element, ) -> ([Self::Element; 4], Self::Element)

Creates a matrix A of unit determinant such that A * (a, b)^T = (d, 0). Returns (A, d).
Source§

fn lcm(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Computes a generator of the ideal (lhs) ∩ (rhs), also known as least common multiple. Read more
Source§

impl<R: RingStore> RingBase for SparsePolyRingBase<R>

Source§

type Element = SparsePolyRingEl<R>

Type of elements of the ring
Source§

fn clone_el(&self, val: &Self::Element) -> Self::Element

Source§

fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Source§

fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Source§

fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Source§

fn negate_inplace(&self, lhs: &mut Self::Element)

Source§

fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Source§

fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Source§

fn zero(&self) -> Self::Element

Source§

fn from_int(&self, value: i32) -> Self::Element

Source§

fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

Source§

fn is_commutative(&self) -> bool

Returns whether the ring is commutative, i.e. a * b = b * a for all elements a, b. Note that addition is assumed to be always commutative.
Source§

fn is_noetherian(&self) -> bool

Returns whether the ring is noetherian, i.e. every ideal is finitely generated. Read more
Source§

fn dbg_within<'a>( &self, value: &Self::Element, out: &mut Formatter<'a>, env: EnvBindingStrength, ) -> Result

Writes a human-readable representation of value to out, taking into account the possible context to place parenthesis as needed. Read more
Source§

fn dbg<'a>(&self, value: &Self::Element, out: &mut Formatter<'a>) -> Result

Writes a human-readable representation of value to out. Read more
Source§

fn square(&self, value: &mut Self::Element)

Source§

fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32)

Source§

fn characteristic<I: IntegerRingStore + Copy>(&self, ZZ: I) -> Option<El<I>>
where I::Type: IntegerRing,

Returns the characteristic of this ring as an element of the given implementation of ZZ. Read more
Source§

fn is_approximate(&self) -> bool

Returns whether this ring computes with approximations to elements. This would usually be the case for rings that are based on f32 or f64, to represent real or complex numbers. Read more
Source§

fn one(&self) -> Self::Element

Source§

fn neg_one(&self) -> Self::Element

Source§

fn is_zero(&self, value: &Self::Element) -> bool

Source§

fn is_one(&self, value: &Self::Element) -> bool

Source§

fn is_neg_one(&self, value: &Self::Element) -> bool

Source§

fn negate(&self, value: Self::Element) -> Self::Element

Source§

fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Source§

fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element

Source§

fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element

Source§

fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Computes lhs := rhs - lhs.
Source§

fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Computes lhs := rhs - lhs.
Source§

fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

Source§

fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

Source§

fn pow_gen<R: RingStore>( &self, x: Self::Element, power: &El<R>, integers: R, ) -> Self::Element
where R::Type: IntegerRing,

Raises x to the power of an arbitrary, nonnegative integer given by a custom integer ring implementation. Read more
Source§

fn sum<I>(&self, els: I) -> Self::Element
where I: IntoIterator<Item = Self::Element>,

Sums the elements given by the iterator. Read more
Source§

fn prod<I>(&self, els: I) -> Self::Element
where I: IntoIterator<Item = Self::Element>,

Computes the product of the elements given by the iterator. Read more
Source§

impl<R: RingStore> RingExtension for SparsePolyRingBase<R>

Source§

type BaseRing = R

Type of the base ring; Read more
Source§

fn base_ring<'a>(&'a self) -> &'a Self::BaseRing

Returns a reference to the base ring.
Source§

fn from(&self, x: El<Self::BaseRing>) -> Self::Element

Maps an element of the base ring into this ring. Read more
Source§

fn from_ref(&self, x: &El<Self::BaseRing>) -> Self::Element

Maps an element of the base ring (given as reference) into this ring.
Source§

fn mul_assign_base(&self, lhs: &mut Self::Element, rhs: &El<Self::BaseRing>)

Computes lhs := lhs * rhs, where rhs is mapped into this ring via RingExtension::from_ref(). Note that this may be faster than self.mul_assign(lhs, self.from_ref(rhs)).
Source§

impl<R> Domain for SparsePolyRingBase<R>
where R: RingStore, R::Type: Domain,

Source§

impl<R> ImplGenericCanIsoFromToMarker for SparsePolyRingBase<R>
where R: RingStore,

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<R> ComputeInnerProduct for R
where R: RingBase + ?Sized,

Source§

default fn inner_product_ref_fst<'a, I>( &self, els: I, ) -> <R as RingBase>::Element
where I: Iterator<Item = (&'a <R as RingBase>::Element, <R as RingBase>::Element)>, <R as RingBase>::Element: 'a,

Computes the inner product sum_i lhs[i] * rhs[i].
Source§

default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
where I: Iterator<Item = (&'a <R as RingBase>::Element, &'a <R as RingBase>::Element)>, <R as RingBase>::Element: 'a,

Computes the inner product sum_i lhs[i] * rhs[i].
Source§

default fn inner_product<I>(&self, els: I) -> <R as RingBase>::Element
where I: Iterator<Item = (<R as RingBase>::Element, <R as RingBase>::Element)>,

Computes the inner product sum_i lhs[i] * rhs[i].
Source§

impl<R, S> CooleyTuckeyButterfly<S> for R
where S: RingBase + ?Sized, R: RingBase + ?Sized,

Source§

default fn butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
where V: VectorViewMut<<R as RingBase>::Element>, H: Homomorphism<S, R>,

Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2])
Source§

default fn inv_butterfly<V, H>( &self, hom: H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
where V: VectorViewMut<<R as RingBase>::Element>, H: Homomorphism<S, R>,

Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle)
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<R> KaratsubaHint for R
where R: RingBase + ?Sized,

Source§

default fn karatsuba_threshold(&self) -> usize

Define a threshold from which on KaratsubaAlgorithm will use the Karatsuba algorithm. Read more
Source§

impl<R> LinSolveRing for R

Source§

default fn solve_right<V1, V2, V3, A>( &self, lhs: SubmatrixMut<'_, V1, <R as RingBase>::Element>, rhs: SubmatrixMut<'_, V2, <R as RingBase>::Element>, out: SubmatrixMut<'_, V3, <R as RingBase>::Element>, allocator: A, ) -> SolveResult

Tries to find a matrix X such that lhs * X = rhs. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<R> StrassenHint for R
where R: RingBase + ?Sized,

Source§

default fn strassen_threshold(&self) -> usize

Define a threshold from which on StrassenAlgorithm will use the Strassen algorithm. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<R> SelfIso for R
where R: CanIsoFromTo<R> + ?Sized,