Struct feanor_math::rings::rust_bigint::RustBigintRingBase

source ·
pub struct RustBigintRingBase;
Expand description

Arbitrary-precision integer implementation.

This is a not-too-well optimized implementation, written in pure Rust. If you need very high performance, consider using [crate::rings::mpir::MPZ] (requires an installation of mpir and activating the feature “mpir”).

For the difference to RustBigintRing, see the documentation of crate::ring::RingStore.

Implementations§

source§

impl RustBigintRingBase

source

pub fn map_i128(&self, val: &RustBigint) -> Option<i128>

source

pub fn parse(&self, string: &str, base: u32) -> Result<RustBigint, ()>

source

pub fn abs_base_u64_repr<'a>( &self, el: &'a RustBigint, ) -> impl 'a + Iterator<Item = u64>

source

pub fn from_base_u64_repr<I>(&self, data: I) -> RustBigint
where I: Iterator<Item = u64>,

Trait Implementations§

source§

impl Clone for RustBigintRingBase

source§

fn clone(&self) -> RustBigintRingBase

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl DivisibilityRing for RustBigintRingBase

source§

fn checked_left_div( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> Option<Self::Element>

Checks whether there is an element x such that rhs * x = lhs, and returns it if it exists. Note that this does not have to be unique, if rhs is a left zero-divisor. In particular, this function will return any element in the ring if lhs = rhs = 0.
source§

fn is_unit(&self, x: &Self::Element) -> bool

source§

impl EuclideanRing for RustBigintRingBase

source§

fn euclidean_div_rem( &self, lhs: Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element)

source§

fn euclidean_deg(&self, val: &Self::Element) -> Option<usize>

source§

fn euclidean_div( &self, lhs: Self::Element, rhs: &Self::Element, ) -> Self::Element

source§

fn euclidean_rem( &self, lhs: Self::Element, rhs: &Self::Element, ) -> Self::Element

source§

impl HashableElRing for RustBigintRingBase

source§

fn hash<H: Hasher>(&self, el: &Self::Element, h: &mut H)

source§

impl IntCast<RustBigintRingBase> for RustBigintRingBase

source§

fn cast(&self, _: &RustBigintRingBase, value: Self::Element) -> Self::Element

source§

impl IntCast<RustBigintRingBase> for StaticRingBase<i128>

source§

fn cast(&self, from: &RustBigintRingBase, value: RustBigint) -> i128

source§

impl IntCast<RustBigintRingBase> for StaticRingBase<i16>

source§

fn cast(&self, from: &RustBigintRingBase, value: RustBigint) -> i16

source§

impl IntCast<RustBigintRingBase> for StaticRingBase<i32>

source§

fn cast(&self, from: &RustBigintRingBase, value: RustBigint) -> i32

source§

impl IntCast<RustBigintRingBase> for StaticRingBase<i64>

source§

fn cast(&self, from: &RustBigintRingBase, value: RustBigint) -> i64

source§

impl IntCast<RustBigintRingBase> for StaticRingBase<i8>

source§

fn cast(&self, from: &RustBigintRingBase, value: RustBigint) -> i8

source§

impl IntCast<StaticRingBase<i128>> for RustBigintRingBase

source§

fn cast(&self, _: &StaticRingBase<i128>, value: i128) -> RustBigint

source§

impl IntCast<StaticRingBase<i16>> for RustBigintRingBase

source§

fn cast(&self, _: &StaticRingBase<i16>, value: i16) -> RustBigint

source§

impl IntCast<StaticRingBase<i32>> for RustBigintRingBase

source§

fn cast(&self, _: &StaticRingBase<i32>, value: i32) -> RustBigint

source§

impl IntCast<StaticRingBase<i64>> for RustBigintRingBase

source§

fn cast(&self, _: &StaticRingBase<i64>, value: i64) -> RustBigint

source§

impl IntCast<StaticRingBase<i8>> for RustBigintRingBase

source§

fn cast(&self, _: &StaticRingBase<i8>, value: i8) -> RustBigint

source§

impl IntegerRing for RustBigintRingBase

source§

fn to_float_approx(&self, value: &Self::Element) -> f64

Computes a float value that is supposed to be close to value. However, no guarantees are made on how close it must be, in particular, this function may also always return 0. (this is just an example - it’s not a good idea). Read more
source§

fn from_float_approx(&self, value: f64) -> Option<Self::Element>

Computes a value that is “close” to the given float. However, no guarantees are made on the definition of close, in particular, this does not have to be the closest integer to the given float, and cannot be used to compute rounding. It is also implementation-defined when to return None, although this is usually the case on infinity and NaN.
source§

fn abs_lowest_set_bit(&self, value: &Self::Element) -> Option<usize>

Returns the index of the lowest set bit in the two-complements representation of abs(value), or None if the value is zero. Read more
source§

fn abs_is_bit_set(&self, value: &Self::Element, i: usize) -> bool

Return whether the i-th bit in the two-complements representation of abs(value) is 1. Read more
source§

fn abs_highest_set_bit(&self, value: &Self::Element) -> Option<usize>

Returns the index of the highest set bit in the two-complements representation of abs(value), or None if the value is zero. Read more
source§

fn euclidean_div_pow_2(&self, value: &mut Self::Element, power: usize)

Computes the euclidean division by a power of two, always rounding to zero (note that euclidean division requires that |remainder| < |divisor|, and thus would otherwise leave multiple possible results). Read more
source§

fn mul_pow_2(&self, value: &mut Self::Element, power: usize)

Multiplies the element by a power of two.
source§

fn get_uniformly_random_bits<G: FnMut() -> u64>( &self, log2_bound_exclusive: usize, rng: G, ) -> Self::Element

Computes a uniformly random integer in [0, 2^log_bound_exclusive - 1], assuming that rng provides uniformly random values in the whole range of u64.
source§

fn representable_bits(&self) -> Option<usize>

Returns n such that this ring can represent at least [-2^n, ..., 2^n - 1]. Returning None means that the size of representable integers is unbounded.
source§

fn rounded_div(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

Computes the rounded division, i.e. rounding to the closest integer. In the case of a tie (i.e. round(0.5)), we round towards +/- infinity. Read more
source§

fn power_of_two(&self, power: usize) -> Self::Element

Returns the value 2^power in this integer ring.
source§

impl OrderedRing for RustBigintRingBase

source§

fn cmp(&self, lhs: &Self::Element, rhs: &Self::Element) -> Ordering

source§

fn is_leq(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_geq(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_lt(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_gt(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_neg(&self, value: &Self::Element) -> bool

source§

fn is_pos(&self, value: &Self::Element) -> bool

source§

fn abs(&self, value: Self::Element) -> Self::Element

source§

impl PartialEq for RustBigintRingBase

source§

fn eq(&self, other: &RustBigintRingBase) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl PrincipalIdealRing for RustBigintRingBase

source§

fn extended_ideal_gen( &self, lhs: &Self::Element, rhs: &Self::Element, ) -> (Self::Element, Self::Element, Self::Element)

Computes a Bezout identity for the generator g of the ideal (lhs, rhs) as g = s * lhs + t * rhs. Read more
source§

fn ideal_gen(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Computes a generator g of the ideal (lhs, rhs) = (g), also known as greatest common divisor. Read more
source§

fn lcm(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

Computes a generator of the ideal (lhs) ∩ (rhs), also known as least common multiple. Read more
source§

impl RingBase for RustBigintRingBase

§

type Element = RustBigint

source§

fn clone_el(&self, val: &Self::Element) -> Self::Element

source§

fn add_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

source§

fn add_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

source§

fn sub_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

source§

fn negate_inplace(&self, lhs: &mut Self::Element)

source§

fn mul_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

source§

fn mul_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

source§

fn zero(&self) -> Self::Element

source§

fn one(&self) -> Self::Element

source§

fn neg_one(&self) -> Self::Element

source§

fn from_int(&self, value: i32) -> Self::Element

source§

fn eq_el(&self, lhs: &Self::Element, rhs: &Self::Element) -> bool

source§

fn is_zero(&self, value: &Self::Element) -> bool

source§

fn is_one(&self, value: &Self::Element) -> bool

source§

fn is_neg_one(&self, value: &Self::Element) -> bool

source§

fn is_commutative(&self) -> bool

source§

fn is_noetherian(&self) -> bool

source§

fn dbg<'a>(&self, value: &Self::Element, out: &mut Formatter<'a>) -> Result

source§

fn characteristic<I: IntegerRingStore>(&self, other_ZZ: &I) -> Option<El<I>>
where I::Type: IntegerRing,

Returns the characteristic of this ring as an element of the given implementation of ZZ. Read more
source§

fn is_approximate(&self) -> bool

Returns whether this ring computes with approximations to elements. This would usually be the case for rings that are based on f32 or f64, to represent real or complex numbers. Read more
source§

fn square(&self, value: &mut Self::Element)

source§

fn negate(&self, value: Self::Element) -> Self::Element

source§

fn sub_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

source§

fn mul_assign_int(&self, lhs: &mut Self::Element, rhs: i32)

source§

fn mul_int(&self, lhs: Self::Element, rhs: i32) -> Self::Element

source§

fn mul_int_ref(&self, lhs: &Self::Element, rhs: i32) -> Self::Element

source§

fn sub_self_assign(&self, lhs: &mut Self::Element, rhs: Self::Element)

Computes lhs := rhs - lhs.
source§

fn sub_self_assign_ref(&self, lhs: &mut Self::Element, rhs: &Self::Element)

Computes lhs := rhs - lhs.
source§

fn add_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn add_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

source§

fn add_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn add(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

source§

fn sub_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn sub_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

source§

fn sub_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn sub(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

source§

fn mul_ref(&self, lhs: &Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn mul_ref_fst(&self, lhs: &Self::Element, rhs: Self::Element) -> Self::Element

source§

fn mul_ref_snd(&self, lhs: Self::Element, rhs: &Self::Element) -> Self::Element

source§

fn mul(&self, lhs: Self::Element, rhs: Self::Element) -> Self::Element

source§

fn pow_gen<R: IntegerRingStore>( &self, x: Self::Element, power: &El<R>, integers: R, ) -> Self::Element
where R::Type: IntegerRing,

Raises x to the power of an arbitrary, nonnegative integer given by a custom integer ring implementation. Read more
source§

fn sum<I>(&self, els: I) -> Self::Element
where I: Iterator<Item = Self::Element>,

source§

fn prod<I>(&self, els: I) -> Self::Element
where I: Iterator<Item = Self::Element>,

source§

impl Copy for RustBigintRingBase

source§

impl Domain for RustBigintRingBase

source§

impl StructuralPartialEq for RustBigintRingBase

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<I, J> CanHomFrom<I> for J
where I: IntegerRing + ?Sized, J: IntegerRing + ?Sized,

§

type Homomorphism = ()

source§

fn has_canonical_hom(&self, _: &I) -> Option<<J as CanHomFrom<I>>::Homomorphism>

source§

fn map_in( &self, from: &I, el: <I as RingBase>::Element, _: &<J as CanHomFrom<I>>::Homomorphism, ) -> <J as RingBase>::Element

source§

default fn map_in_ref( &self, from: &I, el: &<I as RingBase>::Element, hom: &<J as CanHomFrom<I>>::Homomorphism, ) -> <J as RingBase>::Element

source§

fn mul_assign_map_in( &self, from: &S, lhs: &mut Self::Element, rhs: S::Element, hom: &Self::Homomorphism, )

source§

fn mul_assign_map_in_ref( &self, from: &S, lhs: &mut Self::Element, rhs: &S::Element, hom: &Self::Homomorphism, )

source§

impl<I, J> CanIsoFromTo<I> for J
where I: IntegerRing + ?Sized, J: IntegerRing + ?Sized,

§

type Isomorphism = ()

source§

fn has_canonical_iso( &self, _: &I, ) -> Option<<J as CanIsoFromTo<I>>::Isomorphism>

source§

fn map_out( &self, from: &I, el: <J as RingBase>::Element, _: &<J as CanIsoFromTo<I>>::Isomorphism, ) -> <I as RingBase>::Element

source§

impl<R> ConvMulComputation for R
where R: RingBase + ?Sized,

source§

default fn karatsuba_threshold(&self) -> usize

Define a threshold from which on the default implementation of ConvMulComputation::add_assign_conv_mul() will use the Karatsuba algorithm. Read more
source§

fn add_assign_conv_mul<M>( &self, dst: &mut [<R as RingBase>::Element], lhs: &[<R as RingBase>::Element], rhs: &[<R as RingBase>::Element], memory_provider: &M, )
where M: MemoryProvider<<R as RingBase>::Element>,

Computes the convolution of lhs and rhs, and adds the result to dst. Read more
source§

impl<R, S> CooleyTuckeyButterfly<S> for R
where S: RingBase + ?Sized, R: RingBase + ?Sized,

source§

default fn butterfly<V, H>( &self, hom: &H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
where V: VectorViewMut<<R as RingBase>::Element>, H: Homomorphism<S, R>,

Should compute (values[i1], values[i2]) := (values[i1] + twiddle * values[i2], values[i1] - twiddle * values[i2])
source§

default fn inv_butterfly<V, H>( &self, hom: &H, values: &mut V, twiddle: &<S as RingBase>::Element, i1: usize, i2: usize, )
where V: VectorViewMut<<R as RingBase>::Element>, H: Homomorphism<S, R>,

Should compute (values[i1], values[i2]) := (values[i1] + values[i2], (values[i1] - values[i2]) * twiddle)
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<R> InnerProductComputation for R
where R: RingBase + ?Sized,

source§

default fn inner_product_ref_fst<'a, I>( &self, els: I, ) -> <R as RingBase>::Element
where I: Iterator<Item = (&'a <R as RingBase>::Element, <R as RingBase>::Element)>, <R as RingBase>::Element: 'a,

Computes the inner product sum_i lhs[i] * rhs[i].
source§

default fn inner_product_ref<'a, I>(&self, els: I) -> <R as RingBase>::Element
where I: Iterator<Item = (&'a <R as RingBase>::Element, &'a <R as RingBase>::Element)>, <R as RingBase>::Element: 'a,

Computes the inner product sum_i lhs[i] * rhs[i].
source§

default fn inner_product<I>(&self, els: I) -> <R as RingBase>::Element
where I: Iterator<Item = (<R as RingBase>::Element, <R as RingBase>::Element)>,

Computes the inner product sum_i lhs[i] * rhs[i].
source§

impl<F, T> IntCast<F> for T
where F: IntegerRing + ?Sized, T: IntegerRing + ?Sized,

source§

default fn cast( &self, from: &F, value: <F as RingBase>::Element, ) -> <T as RingBase>::Element

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<R> SelfIso for R
where R: CanIsoFromTo<R> + ?Sized,