pub struct Network { /* private fields */ }
Expand description

The main neural network struct.

Implementations§

source§

impl Network

source

pub fn new( inputs: usize, outputs: usize, activation_func: ActivationType, alpha: f64 ) -> Self

Creates a new empty network with the given number of inputs and outputs.

Example
use fast_neural_network::neural_network::*;
use fast_neural_network::activation::*;

let mut network = Network::new(3, 1, ActivationType::Relu, 0.005);

assert_eq!(network.dimensions().0, 3);
assert_eq!(network.dimensions().1, 1);
assert_eq!(network.hidden_layers_size(), 0);
assert_eq!(network.leanring_rate(), 0.005);
source

pub fn new_with_layers( inputs: usize, outputs: usize, hidden_layers: Vec<Layer>, activation_func: ActivationType, alpha: f64 ) -> Self

Creates a new empty network with the given number of inputs and outputs and the given hidden layers.

Example
use fast_neural_network::neural_network::*;
use fast_neural_network::activation::*;

let mut network = Network::new_with_layers(3, 1, vec![Layer::new(4), Layer::new(4)], ActivationType::Relu, 0.005);

assert_eq!(network.dimensions().0, 3);
assert_eq!(network.dimensions().1, 1);
assert_eq!(network.hidden_layers_size(), 2);
assert_eq!(network.leanring_rate(), 0.005);
source

pub fn load(path: &str) -> Self

Loads a network from a json file.

Example
use fast_neural_network::neural_network::*;
 
let mut network = Network::load("network.json");
source

pub fn save(&self, path: &str)

Saves the network to a json file.

Example
use fast_neural_network::neural_network::*;
use fast_neural_network::activation::*;
 
let mut network = Network::new(3, 1, ActivationType::Relu, 0.005);
 
network.save("network.json");
source

pub fn from_json(json: &str) -> Self

Creates a network from the given JSON string.

Panics

Panics if the JSON string is not valid.

source

pub fn add_hidden_layer(&mut self, layer: Layer)

Adds a hidden layer to the network.

source

pub fn add_hidden_layer_with_size(&mut self, size: usize)

Adds a hidden layer to the network with the given size.

Example
use fast_neural_network::neural_network::*;
use fast_neural_network::activation::*;
 
let mut network = Network::new(3, 1, ActivationType::Relu, 0.005);
 
network.add_hidden_layer_with_size(4);
source

pub fn compile(&mut self)

Compiles the network. This is done automatically during training.

Compilations should be done after the hidden layers are set.

Example
use fast_neural_network::neural_network::*;
use fast_neural_network::activation::*;
 
let mut network = Network::new(3, 1, ActivationType::Relu, 0.005);
network.add_hidden_layer_with_size(4);
network.add_hidden_layer_with_size(4);
network.compile();
Panics

Panics if any of the dimentions is 0

source

pub fn dimensions(&self) -> (usize, usize)

Returns a Tuple with the dimentions of the Neural Network (inputs, outputs)

source

pub fn set_activation(&mut self, activation: ActivationType)

Sets the activation function to be used by the network

source

pub fn activation(&self) -> ActivationType

Returns the activation function being used

source

pub fn set_layer_weights(&mut self, layer: usize, weights: Matrix)

Sets the weights and biases of the given layer

source

pub fn layer_weights(&self, layer: usize) -> Matrix

Returns the weights of the given layer

source

pub fn set_layer_biases(&mut self, layer: usize, biases: Matrix)

Sets the biases of the given layer

source

pub fn layer_biases(&self, layer: usize) -> Matrix

Returns the biases of the given layer

source

pub fn hidden_layers_size(&self) -> usize

Returns the number of hidden layers

source

pub fn set_learning_rate(&mut self, alpha: f64)

Sets the learning rate of the network

source

pub fn leanring_rate(&self) -> f64

Returns the learning rate of the network

source

pub fn forward_propagate(&mut self, input: &Vec<f64>) -> Vec<f64>

Returns the output of the network for the given input. It doesn’t consume the input

Example
// network creation and training
// ...
 
let prediction = network.forward_propagate(&[1, 3]); // Predict using the input [1, 3]
source

pub fn back_propagate(&mut self, input: &Vec<f64>, target: &Vec<f64>)

Trains the network with the given input and target output.

Example
// network creation
// ...
 
let input = vec![1, 3];
let target = vec![0.5];
 
network.back_propagate(&input, &target);

Trait Implementations§

source§

impl Clone for Network

source§

fn clone(&self) -> Network

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Network

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<'de> Deserialize<'de> for Network

source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl Display for Network

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Serialize for Network

source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>where __S: Serializer,

Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pointable for T

§

const ALIGN: usize = mem::align_of::<T>()

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for Twhere T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for Twhere V: MultiLane<T>,

§

fn vzip(self) -> V

source§

impl<T> DeserializeOwned for Twhere T: for<'de> Deserialize<'de>,