[−][src]Struct euclid::Point2D
A 2d Point tagged with a unit.
Fields
x: Ty: TMethods
impl<T: Copy + Zero, U> Point2D<T, U>[src]
pub fn origin() -> Self[src]
Constructor, setting all components to zero.
pub fn zero() -> Self[src]
pub fn to_3d(&self) -> Point3D<T, U>[src]
Convert into a 3d point.
impl<T, U> Point2D<T, U>[src]
impl<T: Copy, U> Point2D<T, U>[src]
pub fn from_lengths(x: Length<T, U>, y: Length<T, U>) -> Self[src]
Constructor taking properly Lengths instead of scalar values.
pub fn extend(&self, z: T) -> Point3D<T, U>[src]
Create a 3d point from this one, using the specified z value.
pub fn to_vector(&self) -> Vector2D<T, U>[src]
Cast this point into a vector.
Equivalent to subtracting the origin from this point.
pub fn yx(&self) -> Self[src]
Swap x and y.
pub fn to_untyped(&self) -> Point2D<T, UnknownUnit>[src]
Drop the units, preserving only the numeric value.
pub fn from_untyped(p: Point2D<T, UnknownUnit>) -> Self[src]
Tag a unitless value with units.
pub fn cast_unit<V>(&self) -> Point2D<T, V>[src]
Cast the unit
pub fn to_array(&self) -> [T; 2][src]
pub fn to_tuple(&self) -> (T, T)[src]
impl<T: Copy + Add<T, Output = T>, U> Point2D<T, U>[src]
impl<T: Float, U> Point2D<T, U>[src]
pub fn min(self, other: Self) -> Self[src]
pub fn max(self, other: Self) -> Self[src]
pub fn clamp(&self, start: Self, end: Self) -> Self[src]
impl<T: Round, U> Point2D<T, U>[src]
#[must_use]
pub fn round(&self) -> Self[src]
Rounds each component to the nearest integer value.
This behavior is preserved for negative values (unlike the basic cast).
For example { -0.1, -0.8 }.round() == { 0.0, -1.0 }.
impl<T: Ceil, U> Point2D<T, U>[src]
#[must_use]
pub fn ceil(&self) -> Self[src]
Rounds each component to the smallest integer equal or greater than the original value.
This behavior is preserved for negative values (unlike the basic cast).
For example { -0.1, -0.8 }.ceil() == { 0.0, 0.0 }.
impl<T: Floor, U> Point2D<T, U>[src]
#[must_use]
pub fn floor(&self) -> Self[src]
Rounds each component to the biggest integer equal or lower than the original value.
This behavior is preserved for negative values (unlike the basic cast).
For example { -0.1, -0.8 }.floor() == { -1.0, -1.0 }.
impl<T: NumCast + Copy, U> Point2D<T, U>[src]
pub fn cast<NewT: NumCast + Copy>(&self) -> Point2D<NewT, U>[src]
Cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round(), ceil() or floor() before casting.
pub fn try_cast<NewT: NumCast + Copy>(&self) -> Option<Point2D<NewT, U>>[src]
Fallible cast from one numeric representation to another, preserving the units.
When casting from floating point to integer coordinates, the decimals are truncated
as one would expect from a simple cast, but this behavior does not always make sense
geometrically. Consider using round(), ceil() or floor() before casting.
pub fn to_f32(&self) -> Point2D<f32, U>[src]
Cast into an f32 point.
pub fn to_f64(&self) -> Point2D<f64, U>[src]
Cast into an f64 point.
pub fn to_usize(&self) -> Point2D<usize, U>[src]
Cast into an usize point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
pub fn to_u32(&self) -> Point2D<u32, U>[src]
Cast into an u32 point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
pub fn to_i32(&self) -> Point2D<i32, U>[src]
Cast into an i32 point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
pub fn to_i64(&self) -> Point2D<i64, U>[src]
Cast into an i64 point, truncating decimals if any.
When casting from floating point points, it is worth considering whether
to round(), ceil() or floor() before the cast in order to obtain
the desired conversion behavior.
impl<T, U> Point2D<T, U> where
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>, [src]
T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
pub fn lerp(&self, other: Self, t: T) -> Self[src]
Linearly interpolate between this point and another point.
t is expected to be between zero and one.
Trait Implementations
impl<T: Copy + Add<T, Output = T>, U> Add<Size2D<T, U>> for Point2D<T, U>[src]
type Output = Self
The resulting type after applying the + operator.
fn add(self, other: Size2D<T, U>) -> Self[src]
impl<T: Copy + Add<T, Output = T>, U> Add<Vector2D<T, U>> for Point2D<T, U>[src]
type Output = Self
The resulting type after applying the + operator.
fn add(self, other: Vector2D<T, U>) -> Self[src]
impl<T: Copy + Add<T, Output = T>, U> AddAssign<Vector2D<T, U>> for Point2D<T, U>[src]
fn add_assign(&mut self, other: Vector2D<T, U>)[src]
impl<T: Copy + ApproxEq<T>, U> ApproxEq<Point2D<T, U>> for Point2D<T, U>[src]
fn approx_epsilon() -> Self[src]
fn approx_eq(&self, other: &Self) -> bool[src]
fn approx_eq_eps(&self, other: &Self, eps: &Self) -> bool[src]
impl<T: Clone, U> Clone for Point2D<T, U>[src]
fn clone(&self) -> Self[src]
fn clone_from(&mut self, source: &Self)1.0.0[src]
impl<T: Copy, U> Copy for Point2D<T, U>[src]
impl<T: Debug, U> Debug for Point2D<T, U>[src]
impl<T: Default, U> Default for Point2D<T, U>[src]
impl<T: Display, U> Display for Point2D<T, U>[src]
impl<T: Copy + Div<T, Output = T>, U1, U2> Div<Scale<T, U1, U2>> for Point2D<T, U2>[src]
type Output = Point2D<T, U1>
The resulting type after applying the / operator.
fn div(self, scale: Scale<T, U1, U2>) -> Point2D<T, U1>[src]
impl<T: Copy + Div<T, Output = T>, U> Div<T> for Point2D<T, U>[src]
type Output = Self
The resulting type after applying the / operator.
fn div(self, scale: T) -> Self[src]
impl<T: Copy + Div<T, Output = T>, U> DivAssign<T> for Point2D<T, U>[src]
fn div_assign(&mut self, scale: T)[src]
impl<T, U> Eq for Point2D<T, U> where
T: Eq, [src]
T: Eq,
impl<T: Copy, U> From<[T; 2]> for Point2D<T, U>[src]
impl<T: Copy, U> From<(T, T)> for Point2D<T, U>[src]
impl<T: Zero + One, U> From<Point2D<T, U>> for HomogeneousVector<T, U>[src]
impl<T, U> Hash for Point2D<T, U> where
T: Hash, [src]
T: Hash,
fn hash<H: Hasher>(&self, h: &mut H)[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
H: Hasher,
impl<T: Copy, U> Into<[T; 2]> for Point2D<T, U>[src]
impl<T: Copy, U> Into<(T, T)> for Point2D<T, U>[src]
impl<T: Copy + Mul<T, Output = T>, U1, U2> Mul<Scale<T, U1, U2>> for Point2D<T, U1>[src]
type Output = Point2D<T, U2>
The resulting type after applying the * operator.
fn mul(self, scale: Scale<T, U1, U2>) -> Point2D<T, U2>[src]
impl<T: Copy + Mul<T, Output = T>, U> Mul<T> for Point2D<T, U>[src]
type Output = Self
The resulting type after applying the * operator.
fn mul(self, scale: T) -> Self[src]
impl<T: Copy + Mul<T, Output = T>, U> MulAssign<T> for Point2D<T, U>[src]
fn mul_assign(&mut self, scale: T)[src]
impl<T, U> PartialEq<Point2D<T, U>> for Point2D<T, U> where
T: PartialEq, [src]
T: PartialEq,
impl<T: Copy + Sub<T, Output = T>, U> Sub<Point2D<T, U>> for Point2D<T, U>[src]
type Output = Vector2D<T, U>
The resulting type after applying the - operator.
fn sub(self, other: Self) -> Vector2D<T, U>[src]
impl<T: Copy + Sub<T, Output = T>, U> Sub<Vector2D<T, U>> for Point2D<T, U>[src]
type Output = Self
The resulting type after applying the - operator.
fn sub(self, other: Vector2D<T, U>) -> Self[src]
impl<T: Copy + Sub<T, Output = T>, U> SubAssign<Vector2D<T, U>> for Point2D<T, U>[src]
fn sub_assign(&mut self, other: Vector2D<T, U>)[src]
Auto Trait Implementations
impl<T, U> RefUnwindSafe for Point2D<T, U> where
T: RefUnwindSafe,
U: RefUnwindSafe,
T: RefUnwindSafe,
U: RefUnwindSafe,
impl<T, U> Send for Point2D<T, U> where
T: Send,
U: Send,
T: Send,
U: Send,
impl<T, U> Sync for Point2D<T, U> where
T: Sync,
U: Sync,
T: Sync,
U: Sync,
impl<T, U> Unpin for Point2D<T, U> where
T: Unpin,
U: Unpin,
T: Unpin,
U: Unpin,
impl<T, U> UnwindSafe for Point2D<T, U> where
T: UnwindSafe,
U: UnwindSafe,
T: UnwindSafe,
U: UnwindSafe,
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T[src]
impl<T> From<T> for T[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T[src]
fn clone_into(&self, target: &mut T)[src]
impl<T> ToString for T where
T: Display + ?Sized, [src]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = !
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,