1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//! Items related to bytecode representation for the State Read VM.

use crate::asm::{opcode::ParseOp, ToBytes, ToOpcode, TryFromBytes};

/// A memory efficient representation of a sequence of operations parsed from bytecode.
///
/// Executing certain control flow operations can require the ability to jump
/// back to a previous operation.
///
/// One simple solution might be to use a `Vec<Op>`, however it is important to
/// consider that the size of each element within a `Vec<Op>` will be equal to
/// the size of the discriminant plus the largest `Op` variant size (today, this
/// is `Push(Word)`, but this may change as new operations are added). This can
/// have memory requirement implications for programs with large numbers of ops.
///
/// To avoid this issue, we instead store the raw "packed" bytecode alongside
/// a list of indices into the bytecode representing the location of each
/// operation.
#[derive(Clone, Debug, PartialEq)]
pub struct BytecodeMapped<Op, Bytes = Vec<u8>> {
    /// The bytecode representation of a program's operations.
    bytecode: Bytes,
    /// The index of each op within the bytecode slice.
    ///
    /// Indices are guaranteed to be valid by construction and point to a valid operation.
    op_indices: Vec<usize>,
    /// Ensures that `BytecodeMapped` remains consistent for the given `Op` type.
    _op_ty: core::marker::PhantomData<Op>,
}

/// A slice into a [`BytecodeMapped`] instance.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct BytecodeMappedSlice<'a, Op> {
    /// The full bytecode slice from the original `BytecodeMapped`.
    bytecode: &'a [u8],
    /// Some subslice into the `op_indices` of the original `BytecodeMapped`.
    op_indices: &'a [usize],
    /// Ensures that `BytecodeMapped` remains consistent for the given `Op` type.
    _op_ty: core::marker::PhantomData<Op>,
}

/// A type wrapper around `BytecodeMapped` that lazily constructs the map from
/// the given bytecode as operations are accessed.
pub struct BytecodeMappedLazy<Op, I> {
    /// The `BytecodeMapped` instance that is lazily constructed.
    pub(crate) mapped: BytecodeMapped<Op>,
    /// The iterator yielding bytes.
    pub(crate) iter: I,
}

impl<Op> BytecodeMapped<Op, Vec<u8>> {
    /// Push a single operation onto the bytecode mapping.
    pub fn push_op(&mut self, op: Op)
    where
        Op: ToBytes,
    {
        self.op_indices.push(self.bytecode.len());
        self.bytecode.extend(op.to_bytes());
    }
}

impl<Op, Bytes> BytecodeMapped<Op, Bytes>
where
    Bytes: core::ops::Deref<Target = [u8]>,
{
    /// Attempt to construct a `BytecodeMapped` from an existing slice of bytes.
    ///
    /// `bytes` may be any type that dereferences to a slice of bytes, e.g.
    /// `&[u8]`, `Arc<[u8]>`, `Vec<u8>`, etc.
    pub fn try_from_bytes(bytes: Bytes) -> Result<BytecodeMapped<Op, Bytes>, Op::Error>
    where
        Op: ToOpcode + TryFromBytes,
        Op::Opcode: ParseOp<Op = Op> + TryFrom<u8>,
        Op::Error: From<<Op::Opcode as TryFrom<u8>>::Error> + From<<Op::Opcode as ParseOp>::Error>,
    {
        let bytecode = bytes.deref();
        let mut op_indices = Vec::with_capacity(bytecode.len() / std::mem::size_of::<Op>());
        let mut iter_enum = bytecode.iter().enumerate();
        while let Some((ix, &opcode_byte)) = iter_enum.next() {
            let opcode = Op::Opcode::try_from(opcode_byte)?;
            let mut op_bytes = iter_enum.by_ref().map(|(_, &byte)| byte);
            let _op = opcode.parse_op(&mut op_bytes)?;
            op_indices.push(ix);
        }
        Ok(BytecodeMapped {
            bytecode: bytes,
            op_indices,
            _op_ty: core::marker::PhantomData,
        })
    }

    /// Borrow the inner bytecode and op_indices slices and return a [`BytecodeMappedSlice`].
    pub fn as_slice(&self) -> BytecodeMappedSlice<Op> {
        BytecodeMappedSlice {
            bytecode: self.bytecode(),
            op_indices: self.op_indices(),
            _op_ty: self._op_ty,
        }
    }

    /// The inner slice of bytecode that has been mapped.
    pub fn bytecode(&self) -> &[u8] {
        self.bytecode.deref()
    }

    /// Slice the op indices from the given index.
    ///
    /// The returned slice represents the remainder of the program from the given op.
    ///
    /// Returns `None` if `start` is out of range of the `op_indices` slice.
    pub fn ops_from(&self, start: usize) -> Option<BytecodeMappedSlice<Op>> {
        Some(BytecodeMappedSlice {
            bytecode: self.bytecode(),
            op_indices: self.op_indices.get(start..)?,
            _op_ty: self._op_ty,
        })
    }

    /// The operation at the given index.
    pub fn op(&self, ix: usize) -> Option<Op>
    where
        Op: TryFromBytes,
    {
        let slice = self.ops_from(ix)?;
        slice.ops().next()
    }

    /// An iterator yielding all mapped operations.
    pub fn ops(&self) -> impl '_ + Iterator<Item = Op>
    where
        Op: TryFromBytes,
    {
        expect_ops_from_indices(self.bytecode(), self.op_indices.iter().copied())
    }
}

impl<Op, Bytes> BytecodeMapped<Op, Bytes> {
    /// The slice of operation indices within the mapped bytecode.
    pub fn op_indices(&self) -> &[usize] {
        &self.op_indices
    }
}

impl<'a, Op> BytecodeMappedSlice<'a, Op> {
    /// The slice of operation indices within the mapped bytecode.
    pub fn op_indices(self) -> &'a [usize] {
        self.op_indices
    }

    /// An iterator yielding all mapped operations represented by this slice.
    pub fn ops(self) -> impl 'a + Iterator<Item = Op>
    where
        Op: TryFromBytes,
    {
        expect_ops_from_indices(self.bytecode, self.op_indices.iter().copied())
    }
}

impl<Op, I> BytecodeMappedLazy<Op, I> {
    /// Construct the `BytecodeMappedLazy` from its bytecode iterator.
    pub fn new<J>(bytes: J) -> Self
    where
        J: IntoIterator<IntoIter = I>,
        I: Iterator<Item = u8>,
    {
        let iter = bytes.into_iter();
        let (min, _) = iter.size_hint();
        let mapped = BytecodeMapped {
            bytecode: Vec::with_capacity(min),
            op_indices: Vec::with_capacity(min),
            _op_ty: core::marker::PhantomData,
        };
        Self { mapped, iter }
    }
}

/// Manually implement `Default` to avoid requiring that `Op: Default` as is
/// assumed by `derive(Default)`.
impl<Op> Default for BytecodeMapped<Op> {
    fn default() -> Self {
        BytecodeMapped {
            bytecode: Default::default(),
            op_indices: Default::default(),
            _op_ty: Default::default(),
        }
    }
}

// Allow for collecting a `BytecodeMapped` from an iterator over `Op`s.
impl<Op> FromIterator<Op> for BytecodeMapped<Op>
where
    Op: ToBytes,
{
    fn from_iter<T: IntoIterator<Item = Op>>(iter: T) -> Self {
        let iter = iter.into_iter();
        let (min, _) = iter.size_hint();
        let mut mapped = BytecodeMapped {
            bytecode: Vec::with_capacity(min),
            op_indices: Vec::with_capacity(min),
            _op_ty: core::marker::PhantomData,
        };
        iter.for_each(|op| mapped.push_op(op));
        mapped
    }
}

/// Allow for taking ownership over and mapping an existing `Vec<u8>`.
impl<Op> TryFrom<Vec<u8>> for BytecodeMapped<Op>
where
    Op: ToOpcode + TryFromBytes,
    Op::Opcode: ParseOp<Op = Op> + TryFrom<u8>,
    Op::Error: From<<Op::Opcode as TryFrom<u8>>::Error> + From<<Op::Opcode as ParseOp>::Error>,
{
    type Error = Op::Error;
    fn try_from(bytecode: Vec<u8>) -> Result<Self, Self::Error> {
        Self::try_from_bytes(bytecode)
    }
}

/// Allow for consuming and mapping an existing `&[u8]`.
impl<'a, Op> TryFrom<&'a [u8]> for BytecodeMapped<Op, &'a [u8]>
where
    Op: ToOpcode + TryFromBytes,
    Op::Opcode: ParseOp<Op = Op> + TryFrom<u8>,
    Op::Error: From<<Op::Opcode as TryFrom<u8>>::Error> + From<<Op::Opcode as ParseOp>::Error>,
{
    type Error = Op::Error;
    fn try_from(bytecode: &'a [u8]) -> Result<Self, Self::Error> {
        Self::try_from_bytes(bytecode)
    }
}

/// Given a bytecode slice and an operation mapping that is assumed to have been
/// previously validated, produce an iterator yielding all associated operations.
fn expect_ops_from_indices<'a, Op>(
    bytecode: &'a [u8],
    op_indices: impl 'a + IntoIterator<Item = usize>,
) -> impl 'a + Iterator<Item = Op>
where
    Op: TryFromBytes,
{
    const EXPECT_MSG: &str = "validated upon construction";
    op_indices.into_iter().map(|ix| {
        let mut bytes = bytecode[ix..].iter().copied();
        Op::try_from_bytes(&mut bytes)
            .expect(EXPECT_MSG)
            .expect(EXPECT_MSG)
    })
}