1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#[doc = "Register `CONF0` reader"]
pub type R = crate::R<CONF0_SPEC>;
#[doc = "Register `CONF0` writer"]
pub type W = crate::W<CONF0_SPEC>;
#[doc = "Field `TIMER_SEL` reader - This field is used to select one of timers for channel %s. 0: select timer 0. 1: select timer 1. 2: select timer 2. 3: select timer 3."]
pub type TIMER_SEL_R = crate::FieldReader;
#[doc = "Field `TIMER_SEL` writer - This field is used to select one of timers for channel %s. 0: select timer 0. 1: select timer 1. 2: select timer 2. 3: select timer 3."]
pub type TIMER_SEL_W<'a, REG> = crate::FieldWriter<'a, REG, 2>;
#[doc = "Field `SIG_OUT_EN` reader - Set this bit to enable signal output on channel %s."]
pub type SIG_OUT_EN_R = crate::BitReader;
#[doc = "Field `SIG_OUT_EN` writer - Set this bit to enable signal output on channel %s."]
pub type SIG_OUT_EN_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `IDLE_LV` reader - This bit is used to control the output value when channel %s is inactive."]
pub type IDLE_LV_R = crate::BitReader;
#[doc = "Field `IDLE_LV` writer - This bit is used to control the output value when channel %s is inactive."]
pub type IDLE_LV_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `PARA_UP` writer - This bit is used to update register LEDC_CH%s_HPOINT and LEDC_CH%s_DUTY for channel %s."]
pub type PARA_UP_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `OVF_NUM` reader - This register is used to configure the maximum times of overflow minus 1. The LEDC_OVF_CNT_CH%s_INT interrupt will be triggered when channel %s overflows for (LEDC_OVF_NUM_CH%s + 1) times."]
pub type OVF_NUM_R = crate::FieldReader<u16>;
#[doc = "Field `OVF_NUM` writer - This register is used to configure the maximum times of overflow minus 1. The LEDC_OVF_CNT_CH%s_INT interrupt will be triggered when channel %s overflows for (LEDC_OVF_NUM_CH%s + 1) times."]
pub type OVF_NUM_W<'a, REG> = crate::FieldWriter<'a, REG, 10, u16>;
#[doc = "Field `OVF_CNT_EN` reader - This bit is used to enable the ovf_cnt of channel %s."]
pub type OVF_CNT_EN_R = crate::BitReader;
#[doc = "Field `OVF_CNT_EN` writer - This bit is used to enable the ovf_cnt of channel %s."]
pub type OVF_CNT_EN_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `OVF_CNT_RESET` writer - Set this bit to reset the ovf_cnt of channel %s."]
pub type OVF_CNT_RESET_W<'a, REG> = crate::BitWriter<'a, REG>;
#[doc = "Field `OVF_CNT_RESET_ST` reader - This is the status bit of LEDC_OVF_CNT_RESET_CH%s."]
pub type OVF_CNT_RESET_ST_R = crate::BitReader;
impl R {
    #[doc = "Bits 0:1 - This field is used to select one of timers for channel %s. 0: select timer 0. 1: select timer 1. 2: select timer 2. 3: select timer 3."]
    #[inline(always)]
    pub fn timer_sel(&self) -> TIMER_SEL_R {
        TIMER_SEL_R::new((self.bits & 3) as u8)
    }
    #[doc = "Bit 2 - Set this bit to enable signal output on channel %s."]
    #[inline(always)]
    pub fn sig_out_en(&self) -> SIG_OUT_EN_R {
        SIG_OUT_EN_R::new(((self.bits >> 2) & 1) != 0)
    }
    #[doc = "Bit 3 - This bit is used to control the output value when channel %s is inactive."]
    #[inline(always)]
    pub fn idle_lv(&self) -> IDLE_LV_R {
        IDLE_LV_R::new(((self.bits >> 3) & 1) != 0)
    }
    #[doc = "Bits 5:14 - This register is used to configure the maximum times of overflow minus 1. The LEDC_OVF_CNT_CH%s_INT interrupt will be triggered when channel %s overflows for (LEDC_OVF_NUM_CH%s + 1) times."]
    #[inline(always)]
    pub fn ovf_num(&self) -> OVF_NUM_R {
        OVF_NUM_R::new(((self.bits >> 5) & 0x03ff) as u16)
    }
    #[doc = "Bit 15 - This bit is used to enable the ovf_cnt of channel %s."]
    #[inline(always)]
    pub fn ovf_cnt_en(&self) -> OVF_CNT_EN_R {
        OVF_CNT_EN_R::new(((self.bits >> 15) & 1) != 0)
    }
    #[doc = "Bit 17 - This is the status bit of LEDC_OVF_CNT_RESET_CH%s."]
    #[inline(always)]
    pub fn ovf_cnt_reset_st(&self) -> OVF_CNT_RESET_ST_R {
        OVF_CNT_RESET_ST_R::new(((self.bits >> 17) & 1) != 0)
    }
}
#[cfg(feature = "impl-register-debug")]
impl core::fmt::Debug for R {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        f.debug_struct("CONF0")
            .field("timer_sel", &self.timer_sel())
            .field("sig_out_en", &self.sig_out_en())
            .field("idle_lv", &self.idle_lv())
            .field("ovf_num", &self.ovf_num())
            .field("ovf_cnt_en", &self.ovf_cnt_en())
            .field("ovf_cnt_reset_st", &self.ovf_cnt_reset_st())
            .finish()
    }
}
impl W {
    #[doc = "Bits 0:1 - This field is used to select one of timers for channel %s. 0: select timer 0. 1: select timer 1. 2: select timer 2. 3: select timer 3."]
    #[inline(always)]
    #[must_use]
    pub fn timer_sel(&mut self) -> TIMER_SEL_W<CONF0_SPEC> {
        TIMER_SEL_W::new(self, 0)
    }
    #[doc = "Bit 2 - Set this bit to enable signal output on channel %s."]
    #[inline(always)]
    #[must_use]
    pub fn sig_out_en(&mut self) -> SIG_OUT_EN_W<CONF0_SPEC> {
        SIG_OUT_EN_W::new(self, 2)
    }
    #[doc = "Bit 3 - This bit is used to control the output value when channel %s is inactive."]
    #[inline(always)]
    #[must_use]
    pub fn idle_lv(&mut self) -> IDLE_LV_W<CONF0_SPEC> {
        IDLE_LV_W::new(self, 3)
    }
    #[doc = "Bit 4 - This bit is used to update register LEDC_CH%s_HPOINT and LEDC_CH%s_DUTY for channel %s."]
    #[inline(always)]
    #[must_use]
    pub fn para_up(&mut self) -> PARA_UP_W<CONF0_SPEC> {
        PARA_UP_W::new(self, 4)
    }
    #[doc = "Bits 5:14 - This register is used to configure the maximum times of overflow minus 1. The LEDC_OVF_CNT_CH%s_INT interrupt will be triggered when channel %s overflows for (LEDC_OVF_NUM_CH%s + 1) times."]
    #[inline(always)]
    #[must_use]
    pub fn ovf_num(&mut self) -> OVF_NUM_W<CONF0_SPEC> {
        OVF_NUM_W::new(self, 5)
    }
    #[doc = "Bit 15 - This bit is used to enable the ovf_cnt of channel %s."]
    #[inline(always)]
    #[must_use]
    pub fn ovf_cnt_en(&mut self) -> OVF_CNT_EN_W<CONF0_SPEC> {
        OVF_CNT_EN_W::new(self, 15)
    }
    #[doc = "Bit 16 - Set this bit to reset the ovf_cnt of channel %s."]
    #[inline(always)]
    #[must_use]
    pub fn ovf_cnt_reset(&mut self) -> OVF_CNT_RESET_W<CONF0_SPEC> {
        OVF_CNT_RESET_W::new(self, 16)
    }
}
#[doc = "Configuration register 0 for channel 0\n\nYou can [`read`](crate::Reg::read) this register and get [`conf0::R`](R). You can [`reset`](crate::Reg::reset), [`write`](crate::Reg::write), [`write_with_zero`](crate::Reg::write_with_zero) this register using [`conf0::W`](W). You can also [`modify`](crate::Reg::modify) this register. See [API](https://docs.rs/svd2rust/#read--modify--write-api)."]
pub struct CONF0_SPEC;
impl crate::RegisterSpec for CONF0_SPEC {
    type Ux = u32;
}
#[doc = "`read()` method returns [`conf0::R`](R) reader structure"]
impl crate::Readable for CONF0_SPEC {}
#[doc = "`write(|w| ..)` method takes [`conf0::W`](W) writer structure"]
impl crate::Writable for CONF0_SPEC {
    type Safety = crate::Unsafe;
    const ZERO_TO_MODIFY_FIELDS_BITMAP: u32 = 0;
    const ONE_TO_MODIFY_FIELDS_BITMAP: u32 = 0;
}
#[doc = "`reset()` method sets CONF0 to value 0"]
impl crate::Resettable for CONF0_SPEC {
    const RESET_VALUE: u32 = 0;
}