# Struct elastic_array::ElasticArray128
[−]
[src]

pub struct ElasticArray128<T> { /* fields omitted */ }

## Methods

`impl<T> ElasticArray128<T> where`

T: Copy,

[src]

T: Copy,

`fn new() -> ElasticArray128<T>`

[src]

`fn from_slice(slice: &[T]) -> ElasticArray128<T>`

[src]

`fn from_vec(vec: Vec<T>) -> ElasticArray128<T>`

[src]

`fn push(&mut self, e: T)`

[src]

`fn pop(&mut self) -> Option<T>`

[src]

`fn clear(&mut self)`

[src]

`fn append_slice(&mut self, elements: &[T])`

[src]

`fn into_vec(self) -> Vec<T>`

[src]

`fn insert_slice(&mut self, index: usize, elements: &[T])`

[src]

## Methods from Deref<Target = [T]>

`fn len(&self) -> usize`

1.0.0[src]

`fn is_empty(&self) -> bool`

1.0.0[src]

`fn first(&self) -> Option<&T>`

1.0.0[src]

Returns the first element of the slice, or `None`

if it is empty.

# Examples

let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());

`fn first_mut(&mut self) -> Option<&mut T>`

1.0.0[src]

Returns a mutable pointer to the first element of the slice, or `None`

if it is empty.

# Examples

let x = &mut [0, 1, 2]; if let Some(first) = x.first_mut() { *first = 5; } assert_eq!(x, &[5, 1, 2]);

`fn split_first(&self) -> Option<(&T, &[T])>`

1.5.0[src]

Returns the first and all the rest of the elements of the slice, or `None`

if it is empty.

# Examples

let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }

`fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>`

1.5.0[src]

Returns the first and all the rest of the elements of the slice, or `None`

if it is empty.

# Examples

let x = &mut [0, 1, 2]; if let Some((first, elements)) = x.split_first_mut() { *first = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[3, 4, 5]);

`fn split_last(&self) -> Option<(&T, &[T])>`

1.5.0[src]

Returns the last and all the rest of the elements of the slice, or `None`

if it is empty.

# Examples

let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }

`fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>`

1.5.0[src]

Returns the last and all the rest of the elements of the slice, or `None`

if it is empty.

# Examples

let x = &mut [0, 1, 2]; if let Some((last, elements)) = x.split_last_mut() { *last = 3; elements[0] = 4; elements[1] = 5; } assert_eq!(x, &[4, 5, 3]);

`fn last(&self) -> Option<&T>`

1.0.0[src]

Returns the last element of the slice, or `None`

if it is empty.

# Examples

let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());

`fn last_mut(&mut self) -> Option<&mut T>`

1.0.0[src]

Returns a mutable pointer to the last item in the slice.

# Examples

let x = &mut [0, 1, 2]; if let Some(last) = x.last_mut() { *last = 10; } assert_eq!(x, &[0, 1, 10]);

`fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where`

I: SliceIndex<[T]>,

1.0.0[src]

I: SliceIndex<[T]>,

Returns a reference to an element or subslice depending on the type of index.

- If given a position, returns a reference to the element at that
position or
`None`

if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
`None`

if out of bounds.

# Examples

let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));

`fn get_mut<I>(`

&mut self,

index: I

) -> Option<&mut <I as SliceIndex<[T]>>::Output> where

I: SliceIndex<[T]>,

1.0.0[src]

&mut self,

index: I

) -> Option<&mut <I as SliceIndex<[T]>>::Output> where

I: SliceIndex<[T]>,

Returns a mutable reference to an element or subslice depending on the
type of index (see `get`

) or `None`

if the index is out of bounds.

# Examples

let x = &mut [0, 1, 2]; if let Some(elem) = x.get_mut(1) { *elem = 42; } assert_eq!(x, &[0, 42, 2]);

`unsafe fn get_unchecked<I>(&self, index: I) -> &<I as SliceIndex<[T]>>::Output where`

I: SliceIndex<[T]>,

1.0.0[src]

I: SliceIndex<[T]>,

Returns a reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! For a safe
alternative see `get`

.

# Examples

let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }

`unsafe fn get_unchecked_mut<I>(`

&mut self,

index: I

) -> &mut <I as SliceIndex<[T]>>::Output where

I: SliceIndex<[T]>,

1.0.0[src]

&mut self,

index: I

) -> &mut <I as SliceIndex<[T]>>::Output where

I: SliceIndex<[T]>,

Returns a mutable reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! For a safe
alternative see `get_mut`

.

# Examples

let x = &mut [1, 2, 4]; unsafe { let elem = x.get_unchecked_mut(1); *elem = 13; } assert_eq!(x, &[1, 13, 4]);

`fn as_ptr(&self) -> *const T`

1.0.0[src]

Returns a raw pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

# Examples

let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }

`fn as_mut_ptr(&mut self) -> *mut T`

1.0.0[src]

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

# Examples

let x = &mut [1, 2, 4]; let x_ptr = x.as_mut_ptr(); unsafe { for i in 0..x.len() { *x_ptr.offset(i as isize) += 2; } } assert_eq!(x, &[3, 4, 6]);

`fn swap(&mut self, a: usize, b: usize)`

1.0.0[src]

Swaps two elements in the slice.

# Arguments

- a - The index of the first element
- b - The index of the second element

# Panics

Panics if `a`

or `b`

are out of bounds.

# Examples

let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);

`fn reverse(&mut self)`

1.0.0[src]

Reverses the order of elements in the slice, in place.

# Examples

let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);

`fn iter(&self) -> Iter<T>`

1.0.0[src]

Returns an iterator over the slice.

# Examples

let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);

`fn iter_mut(&mut self) -> IterMut<T>`

1.0.0[src]

Returns an iterator that allows modifying each value.

# Examples

let x = &mut [1, 2, 4]; for elem in x.iter_mut() { *elem += 2; } assert_eq!(x, &[3, 4, 6]);

`fn windows(&self, size: usize) -> Windows<T>`

1.0.0[src]

Returns an iterator over all contiguous windows of length
`size`

. The windows overlap. If the slice is shorter than
`size`

, the iterator returns no values.

# Panics

Panics if `size`

is 0.

# Examples

let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());

If the slice is shorter than `size`

:

let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());

`fn chunks(&self, size: usize) -> Chunks<T>`

1.0.0[src]

Returns an iterator over `size`

elements of the slice at a
time. The chunks are slices and do not overlap. If `size`

does
not divide the length of the slice, then the last chunk will
not have length `size`

.

# Panics

Panics if `size`

is 0.

# Examples

let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());

`fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>`

1.0.0[src]

Returns an iterator over `chunk_size`

elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If `chunk_size`

does
not divide the length of the slice, then the last chunk will not
have length `chunk_size`

.

# Panics

Panics if `chunk_size`

is 0.

# Examples

let v = &mut [0, 0, 0, 0, 0]; let mut count = 1; for chunk in v.chunks_mut(2) { for elem in chunk.iter_mut() { *elem += count; } count += 1; } assert_eq!(v, &[1, 1, 2, 2, 3]);

`fn split_at(&self, mid: usize) -> (&[T], &[T])`

1.0.0[src]

Divides one slice into two at an index.

The first will contain all indices from `[0, mid)`

(excluding
the index `mid`

itself) and the second will contain all
indices from `[mid, len)`

(excluding the index `len`

itself).

# Panics

Panics if `mid > len`

.

# Examples

let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }

`fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])`

1.0.0[src]

Divides one `&mut`

into two at an index.

The first will contain all indices from `[0, mid)`

(excluding
the index `mid`

itself) and the second will contain all
indices from `[mid, len)`

(excluding the index `len`

itself).

# Panics

Panics if `mid > len`

.

# Examples

let mut v = [1, 0, 3, 0, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(2); assert!(left == [1, 0]); assert!(right == [3, 0, 5, 6]); left[1] = 2; right[1] = 4; } assert!(v == [1, 2, 3, 4, 5, 6]);

`fn split<F>(&self, pred: F) -> Split<T, F> where`

F: FnMut(&T) -> bool,

1.0.0[src]

F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match
`pred`

. The matched element is not contained in the subslices.

# Examples

let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());

If two matched elements are directly adjacent, an empty slice will be present between them:

let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());

`fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where`

F: FnMut(&T) -> bool,

1.0.0[src]

F: FnMut(&T) -> bool,

Returns an iterator over mutable subslices separated by elements that
match `pred`

. The matched element is not contained in the subslices.

# Examples

let mut v = [10, 40, 30, 20, 60, 50]; for group in v.split_mut(|num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 1]);

`fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where`

F: FnMut(&T) -> bool,

[src]

F: FnMut(&T) -> bool,

`slice_rsplit`

)Returns an iterator over subslices separated by elements that match
`pred`

, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.

# Examples

#![feature(slice_rsplit)] let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);

As with `split()`

, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.

#![feature(slice_rsplit)] let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);

`fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> where`

F: FnMut(&T) -> bool,

[src]

F: FnMut(&T) -> bool,

`slice_rsplit`

)Returns an iterator over mutable subslices separated by elements that
match `pred`

, starting at the end of the slice and working
backwards. The matched element is not contained in the subslices.

# Examples

#![feature(slice_rsplit)] let mut v = [100, 400, 300, 200, 600, 500]; let mut count = 0; for group in v.rsplit_mut(|num| *num % 3 == 0) { count += 1; group[0] = count; } assert_eq!(v, [3, 400, 300, 2, 600, 1]);

`fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where`

F: FnMut(&T) -> bool,

1.0.0[src]

F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match
`pred`

, limited to returning at most `n`

items. The matched element is
not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`

,
`[20, 60, 50]`

):

let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }

`fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where`

F: FnMut(&T) -> bool,

1.0.0[src]

F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match
`pred`

, limited to returning at most `n`

items. The matched element is
not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

let mut v = [10, 40, 30, 20, 60, 50]; for group in v.splitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(v, [1, 40, 30, 1, 60, 50]);

`fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where`

F: FnMut(&T) -> bool,

1.0.0[src]

F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match
`pred`

limited to returning at most `n`

items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. `[50]`

, `[10, 40, 30, 20]`

):

let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }

`fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where`

F: FnMut(&T) -> bool,

1.0.0[src]

F: FnMut(&T) -> bool,

Returns an iterator over subslices separated by elements that match
`pred`

limited to returning at most `n`

items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

let mut s = [10, 40, 30, 20, 60, 50]; for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { group[0] = 1; } assert_eq!(s, [1, 40, 30, 20, 60, 1]);

`fn contains(&self, x: &T) -> bool where`

T: PartialEq<T>,

1.0.0[src]

T: PartialEq<T>,

Returns `true`

if the slice contains an element with the given value.

# Examples

let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));

`fn starts_with(&self, needle: &[T]) -> bool where`

T: PartialEq<T>,

1.0.0[src]

T: PartialEq<T>,

Returns `true`

if `needle`

is a prefix of the slice.

# Examples

let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));

Always returns `true`

if `needle`

is an empty slice:

let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));

`fn ends_with(&self, needle: &[T]) -> bool where`

T: PartialEq<T>,

1.0.0[src]

T: PartialEq<T>,

Returns `true`

if `needle`

is a suffix of the slice.

# Examples

let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));

Always returns `true`

if `needle`

is an empty slice:

let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));

`fn binary_search(&self, x: &T) -> Result<usize, usize> where`

T: Ord,

1.0.0[src]

T: Ord,

Binary searches this sorted slice for a given element.

If the value is found then `Ok`

is returned, containing the
index of the matching element; if the value is not found then
`Err`

is returned, containing the index where a matching
element could be inserted while maintaining sorted order.

# Examples

Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in `[1, 4]`

.

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });

`fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where`

F: FnMut(&'a T) -> Ordering,

1.0.0[src]

F: FnMut(&'a T) -> Ordering,

Binary searches this sorted slice with a comparator function.

The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is `Less`

,
`Equal`

or `Greater`

the desired target.

If a matching value is found then returns `Ok`

, containing
the index for the matched element; if no match is found then
`Err`

is returned, containing the index where a matching
element could be inserted while maintaining sorted order.

# Examples

Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in `[1, 4]`

.

let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });

`fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> where`

B: Ord,

F: FnMut(&'a T) -> B,

1.10.0[src]

B: Ord,

F: FnMut(&'a T) -> B,

Binary searches this sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with
`sort_by_key`

using the same key extraction function.

If a matching value is found then returns `Ok`

, containing the
index for the matched element; if no match is found then `Err`

is returned, containing the index where a matching element could
be inserted while maintaining sorted order.

# Examples

Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in `[1, 4]`

.

let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });

`fn sort(&mut self) where`

T: Ord,

1.0.0[src]

T: Ord,

Sorts the slice.

This sort is stable (i.e. does not reorder equal elements) and `O(n log n)`

worst-case.

When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn't allocate auxiliary memory.
See `sort_unstable`

.

# Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of `self`

, but for short slices a
non-allocating insertion sort is used instead.

# Examples

let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);

`fn sort_by<F>(&mut self, compare: F) where`

F: FnMut(&T, &T) -> Ordering,

1.0.0[src]

F: FnMut(&T, &T) -> Ordering,

Sorts the slice with a comparator function.

This sort is stable (i.e. does not reorder equal elements) and `O(n log n)`

worst-case.

When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn't allocate auxiliary memory.
See `sort_unstable_by`

.

# Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of `self`

, but for short slices a
non-allocating insertion sort is used instead.

# Examples

let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);

`fn sort_by_key<B, F>(&mut self, f: F) where`

B: Ord,

F: FnMut(&T) -> B,

1.7.0[src]

B: Ord,

F: FnMut(&T) -> B,

Sorts the slice with a key extraction function.

This sort is stable (i.e. does not reorder equal elements) and `O(n log n)`

worst-case.

When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn't allocate auxiliary memory.
See `sort_unstable_by_key`

.

# Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of `self`

, but for short slices a
non-allocating insertion sort is used instead.

# Examples

let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);

`fn sort_unstable(&mut self) where`

T: Ord,

1.20.0[src]

T: Ord,

Sorts the slice, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and `O(n log n)`

worst-case.

# Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

# Examples

let mut v = [-5, 4, 1, -3, 2]; v.sort_unstable(); assert!(v == [-5, -3, 1, 2, 4]);

`fn sort_unstable_by<F>(&mut self, compare: F) where`

F: FnMut(&T, &T) -> Ordering,

1.20.0[src]

F: FnMut(&T, &T) -> Ordering,

Sorts the slice with a comparator function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and `O(n log n)`

worst-case.

# Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

# Examples

let mut v = [5, 4, 1, 3, 2]; v.sort_unstable_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_unstable_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);

`fn sort_unstable_by_key<B, F>(&mut self, f: F) where`

B: Ord,

F: FnMut(&T) -> B,

1.20.0[src]

B: Ord,

F: FnMut(&T) -> B,

Sorts the slice with a key extraction function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate),
and `O(n log n)`

worst-case.

# Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

# Examples

let mut v = [-5i32, 4, 1, -3, 2]; v.sort_unstable_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);

`fn rotate(&mut self, mid: usize)`

[src]

`slice_rotate`

)Permutes the slice in-place such that `self[mid..]`

moves to the
beginning of the slice while `self[..mid]`

moves to the end of the
slice. Equivalently, rotates the slice `mid`

places to the left
or `k = self.len() - mid`

places to the right.

This is a "k-rotation", a permutation in which item `i`

moves to
position `i + k`

, modulo the length of the slice. See *Elements
of Programming* §10.4.

Rotation by `mid`

and rotation by `k`

are inverse operations.

# Panics

This function will panic if `mid`

is greater than the length of the
slice. (Note that `mid == self.len()`

does *not* panic; it's a nop
rotation with `k == 0`

, the inverse of a rotation with `mid == 0`

.)

# Complexity

Takes linear (in `self.len()`

) time.

# Examples

#![feature(slice_rotate)] let mut a = [1, 2, 3, 4, 5, 6, 7]; let mid = 2; a.rotate(mid); assert_eq!(&a, &[3, 4, 5, 6, 7, 1, 2]); let k = a.len() - mid; a.rotate(k); assert_eq!(&a, &[1, 2, 3, 4, 5, 6, 7]); use std::ops::Range; fn slide<T>(slice: &mut [T], range: Range<usize>, to: usize) { if to < range.start { slice[to..range.end].rotate(range.start-to); } else if to > range.end { slice[range.start..to].rotate(range.end-range.start); } } let mut v: Vec<_> = (0..10).collect(); slide(&mut v, 1..4, 7); assert_eq!(&v, &[0, 4, 5, 6, 1, 2, 3, 7, 8, 9]); slide(&mut v, 6..8, 1); assert_eq!(&v, &[0, 3, 7, 4, 5, 6, 1, 2, 8, 9]);

`fn clone_from_slice(&mut self, src: &[T]) where`

T: Clone,

1.7.0[src]

T: Clone,

Copies the elements from `src`

into `self`

.

The length of `src`

must be the same as `self`

.

If `src`

implements `Copy`

, it can be more performant to use
`copy_from_slice`

.

# Panics

This function will panic if the two slices have different lengths.

# Examples

let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.clone_from_slice(&src); assert!(dst == [1, 2, 3]);

`fn copy_from_slice(&mut self, src: &[T]) where`

T: Copy,

1.9.0[src]

T: Copy,

Copies all elements from `src`

into `self`

, using a memcpy.

The length of `src`

must be the same as `self`

.

If `src`

does not implement `Copy`

, use `clone_from_slice`

.

# Panics

This function will panic if the two slices have different lengths.

# Examples

let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.copy_from_slice(&src); assert_eq!(src, dst);

`fn swap_with_slice(&mut self, src: &mut [T])`

[src]

`swap_with_slice`

)Swaps all elements in `self`

with those in `src`

.

The length of `src`

must be the same as `self`

.

# Panics

This function will panic if the two slices have different lengths.

# Example

#![feature(swap_with_slice)] let mut src = [1, 2, 3]; let mut dst = [7, 8, 9]; src.swap_with_slice(&mut dst); assert_eq!(src, [7, 8, 9]); assert_eq!(dst, [1, 2, 3]);

`fn to_vec(&self) -> Vec<T> where`

T: Clone,

1.0.0[src]

T: Clone,

Copies `self`

into a new `Vec`

.

# Examples

let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.

## Trait Implementations

`impl<T> Eq for ElasticArray128<T> where`

T: Eq,

[src]

T: Eq,

`impl<T> Debug for ElasticArray128<T> where`

T: Debug,

[src]

T: Debug,

`fn fmt(&self, f: &mut Formatter) -> Result<(), Error>`

[src]

Formats the value using the given formatter.

`impl<T, U> PartialEq<U> for ElasticArray128<T> where`

T: PartialEq,

U: Deref<Target = [T]>,

[src]

T: PartialEq,

U: Deref<Target = [T]>,

`fn eq(&self, other: &U) -> bool`

[src]

This method tests for `self`

and `other`

values to be equal, and is used by `==`

. Read more

`fn ne(&self, other: &Rhs) -> bool`

1.0.0[src]

This method tests for `!=`

.

`impl<T, U> PartialOrd<U> for ElasticArray128<T> where`

T: PartialOrd,

U: Deref<Target = [T]>,

[src]

T: PartialOrd,

U: Deref<Target = [T]>,

`fn partial_cmp(&self, other: &U) -> Option<Ordering>`

[src]

This method returns an ordering between `self`

and `other`

values if one exists. Read more

`fn lt(&self, other: &Rhs) -> bool`

1.0.0[src]

This method tests less than (for `self`

and `other`

) and is used by the `<`

operator. Read more

`fn le(&self, other: &Rhs) -> bool`

1.0.0[src]

This method tests less than or equal to (for `self`

and `other`

) and is used by the `<=`

operator. Read more

`fn gt(&self, other: &Rhs) -> bool`

1.0.0[src]

This method tests greater than (for `self`

and `other`

) and is used by the `>`

operator. Read more

`fn ge(&self, other: &Rhs) -> bool`

1.0.0[src]

This method tests greater than or equal to (for `self`

and `other`

) and is used by the `>=`

operator. Read more

`impl<T> Ord for ElasticArray128<T> where`

T: Ord,

[src]

T: Ord,

`fn cmp(&self, other: &Self) -> Ordering`

[src]

This method returns an `Ordering`

between `self`

and `other`

. Read more

`fn max(self, other: Self) -> Self`

1.22.0[src]

Compares and returns the maximum of two values. Read more

`fn min(self, other: Self) -> Self`

1.22.0[src]

Compares and returns the minimum of two values. Read more

`impl<T> Hash for ElasticArray128<T> where`

T: Hash,

[src]

T: Hash,

`fn hash<H>(&self, state: &mut H) where`

H: Hasher,

[src]

H: Hasher,

Feeds this value into the given [`Hasher`

]. Read more

`fn hash_slice<H>(data: &[Self], state: &mut H) where`

H: Hasher,

1.3.0[src]

H: Hasher,

Feeds a slice of this type into the given [`Hasher`

]. Read more

`impl<T> HeapSizeOf for ElasticArray128<T> where`

T: HeapSizeOf,

[src]

T: HeapSizeOf,

`fn heap_size_of_children(&self) -> usize`

[src]

Measure the size of any heap-allocated structures that hang off this value, but not the space taken up by the value itself (i.e. what size_of:: measures, more or less); that space is handled by the implementation of HeapSizeOf for Box below. Read more

`impl<T> Clone for ElasticArray128<T> where`

T: Copy,

[src]

T: Copy,

`fn clone(&self) -> ElasticArray128<T>`

[src]

Returns a copy of the value. Read more

`fn clone_from(&mut self, source: &Self)`

1.0.0[src]

Performs copy-assignment from `source`

. Read more

`impl<T> Default for ElasticArray128<T> where`

T: Copy,

[src]

T: Copy,

`fn default() -> ElasticArray128<T>`

[src]

Returns the "default value" for a type. Read more

`impl<T> Deref for ElasticArray128<T>`

[src]

`type Target = [T]`

The resulting type after dereferencing.

`fn deref(&self) -> &[T]`

[src]

Dereferences the value.