Model

Struct Model 

Source
pub struct Model {
    pub layers: Vec<Box<dyn Layer>>,
    pub optimizer: Optimizers,
}
Expand description

A neural network model with a keras-inspired API

Fields§

§layers: Vec<Box<dyn Layer>>§optimizer: Optimizers

Implementations§

Source§

impl Model

Source

pub fn new() -> Model

Create a new model

Examples found in repository?
examples/nn_full.rs (line 10)
4fn main() {
5    Logger::new().init().unwrap();
6    let x = Tensor::linspace(-5.0, 5.0, 50);
7    let func = &x * -5.0;
8    let y = &func + &(Tensor::rand([50, 1]) * 0.4);
9
10    let mut model = Model::new();
11    model.add_layer(Linear::new(1, 10, Activations::None));
12    model.add_layer(Linear::new(10, 10, Activations::None));
13    model.add_layer(Linear::new(10, 1, Activations::None));
14
15    model.compile(Optimizers::SGD);
16    model.fit(&x, &y, 500, 0.00001, true);
17
18    let x_pred = scalar!(1.0);
19    let y_pred = model.predict(&x_pred);
20    println!("Predict result (should be -5): {:?}", y_pred);
21}
Source

pub fn add_layer(&mut self, layer: Linear)

Add a layer to a model

Examples found in repository?
examples/nn_full.rs (line 11)
4fn main() {
5    Logger::new().init().unwrap();
6    let x = Tensor::linspace(-5.0, 5.0, 50);
7    let func = &x * -5.0;
8    let y = &func + &(Tensor::rand([50, 1]) * 0.4);
9
10    let mut model = Model::new();
11    model.add_layer(Linear::new(1, 10, Activations::None));
12    model.add_layer(Linear::new(10, 10, Activations::None));
13    model.add_layer(Linear::new(10, 1, Activations::None));
14
15    model.compile(Optimizers::SGD);
16    model.fit(&x, &y, 500, 0.00001, true);
17
18    let x_pred = scalar!(1.0);
19    let y_pred = model.predict(&x_pred);
20    println!("Predict result (should be -5): {:?}", y_pred);
21}
Source

pub fn forward(&self, x: &Tensor) -> Tensor

Compute the forward pass of a model

Source

pub fn parameters(&self) -> Vec<&Tensor>

Get the weights and biases of a model

Source

pub fn compile(&mut self, optimizer: Optimizers)

Configure a model with an optimizer

Examples found in repository?
examples/nn_full.rs (line 15)
4fn main() {
5    Logger::new().init().unwrap();
6    let x = Tensor::linspace(-5.0, 5.0, 50);
7    let func = &x * -5.0;
8    let y = &func + &(Tensor::rand([50, 1]) * 0.4);
9
10    let mut model = Model::new();
11    model.add_layer(Linear::new(1, 10, Activations::None));
12    model.add_layer(Linear::new(10, 10, Activations::None));
13    model.add_layer(Linear::new(10, 1, Activations::None));
14
15    model.compile(Optimizers::SGD);
16    model.fit(&x, &y, 500, 0.00001, true);
17
18    let x_pred = scalar!(1.0);
19    let y_pred = model.predict(&x_pred);
20    println!("Predict result (should be -5): {:?}", y_pred);
21}
Source

pub fn fit( &mut self, x: &Tensor, y: &Tensor, epochs: usize, lr: f64, debug: bool, )

Train a model

Examples found in repository?
examples/nn_full.rs (line 16)
4fn main() {
5    Logger::new().init().unwrap();
6    let x = Tensor::linspace(-5.0, 5.0, 50);
7    let func = &x * -5.0;
8    let y = &func + &(Tensor::rand([50, 1]) * 0.4);
9
10    let mut model = Model::new();
11    model.add_layer(Linear::new(1, 10, Activations::None));
12    model.add_layer(Linear::new(10, 10, Activations::None));
13    model.add_layer(Linear::new(10, 1, Activations::None));
14
15    model.compile(Optimizers::SGD);
16    model.fit(&x, &y, 500, 0.00001, true);
17
18    let x_pred = scalar!(1.0);
19    let y_pred = model.predict(&x_pred);
20    println!("Predict result (should be -5): {:?}", y_pred);
21}
Source

pub fn predict(&self, x: &Tensor) -> Tensor

Make predictions from a model

Examples found in repository?
examples/nn_full.rs (line 19)
4fn main() {
5    Logger::new().init().unwrap();
6    let x = Tensor::linspace(-5.0, 5.0, 50);
7    let func = &x * -5.0;
8    let y = &func + &(Tensor::rand([50, 1]) * 0.4);
9
10    let mut model = Model::new();
11    model.add_layer(Linear::new(1, 10, Activations::None));
12    model.add_layer(Linear::new(10, 10, Activations::None));
13    model.add_layer(Linear::new(10, 1, Activations::None));
14
15    model.compile(Optimizers::SGD);
16    model.fit(&x, &y, 500, 0.00001, true);
17
18    let x_pred = scalar!(1.0);
19    let y_pred = model.predict(&x_pred);
20    println!("Predict result (should be -5): {:?}", y_pred);
21}

Auto Trait Implementations§

§

impl Freeze for Model

§

impl !RefUnwindSafe for Model

§

impl !Send for Model

§

impl !Sync for Model

§

impl Unpin for Model

§

impl !UnwindSafe for Model

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V