Struct Regex

Source
pub struct Regex { /* private fields */ }

Implementations§

Source§

impl Regex

Source

pub fn new(pat: &str) -> Result<Self, Error>

Source

pub fn is_match(&self, text: &str) -> bool

Returns true if and only if there is a match for the regex in the string given.

§Example

Test if some text contains at least one word with exactly 13 Unicode word characters:

let text = "I categorically deny having triskaidekaphobia.";
assert!(Regex::new(r"\b\w{13}\b").unwrap().is_match(text));
Source

pub fn is_match_at(&self, text: &str, index: usize) -> bool

Returns the same as is_match, but starts the search at the given offset.

The significance of the starting point is that it takes the surrounding context into consideration. For example, the \A anchor can only match when start == 0.

Source

pub fn find<'t>(&self, text: &'t str) -> Option<Match<'t>>

Returns the start and end byte range of the leftmost-first match in text. If no match exists, then None is returned.

Note that this should only be used if you want to discover the position of the match. Testing the existence of a match is faster if you use is_match.

§Example

Find the start and end location of the first word with exactly 13 Unicode word characters:

let text = "I categorically deny having triskaidekaphobia.";
let mat = Regex::new(r"\b\w{13}\b").unwrap().find(text).unwrap();
assert_eq!(mat.start(), 2);
assert_eq!(mat.end(), 15);
Source

pub fn find_at<'t>(&self, text: &'t str, start: usize) -> Option<Match<'t>>

Returns the same as find, but starts the search at the given offset.

The significance of the starting point is that it takes the surrounding context into consideration. For example, the \A anchor can only match when start == 0.

Source

pub fn find_iter<'r, 't>(&'r self, text: &'t str) -> Matches<'r, 't>

Returns an iterator for each successive non-overlapping match in text, returning the start and end byte indices with respect to text.

§Example

Find the start and end location of every word with exactly 13 Unicode word characters:

let text = "Retroactively relinquishing remunerations is reprehensible.";
let re = Regex::new(r"\b\w{13}\b").unwrap();
let mut iter = re.find_iter(text);
assert_eq!(iter.next().unwrap().as_str(), "Retroactively");
assert_eq!(iter.next().unwrap().as_str(), "relinquishing");
assert_eq!(iter.next().unwrap().as_str(), "remunerations");
assert_eq!(iter.next().unwrap().as_str(), "reprehensible");
assert!(iter.next().is_none());

Trait Implementations§

Source§

impl Clone for Regex

Source§

fn clone(&self) -> Regex

Returns a duplicate of the value. Read more
1.0.0 · Source§

const fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Regex

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Hash for Regex

Source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl PartialEq for Regex

Source§

fn eq(&self, other: &Regex) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

const fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Eq for Regex

Source§

impl StructuralPartialEq for Regex

Auto Trait Implementations§

§

impl Freeze for Regex

§

impl RefUnwindSafe for Regex

§

impl Send for Regex

§

impl Sync for Regex

§

impl Unpin for Regex

§

impl UnwindSafe for Regex

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.