Function plot

Source
pub fn plot(
    name: &str,
    x: Vec<f64>,
    ys: Vec<Vec<f64>>,
    label: Vec<String>,
    path: Option<&str>,
) -> Result<(), Box<dyn Error>>
Expand description

Plot the graph of the given data. ‘name’ is the name of the file. ‘x’ is the x-axis data. ‘ys’ is the y-axis data. ‘label’ is the label of the data. ‘path’ is the path to save the graph.

Examples found in repository?
examples/xor.rs (lines 59-65)
12fn main() {
13    let (train_input, train_expected_output) = data_gen(TRAIN_STEP, RANDOM_SEED);
14    let (test_input, test_expected_output) = data_gen(TEST_STEP, TEST_RANDOM_SEED);
15
16    let path = format!("{}/examples/graph", env!("CARGO_MANIFEST_DIR"));
17
18    let n_u = train_input.first().unwrap().len() as u64;
19    let n_y = train_expected_output.first().unwrap().len() as u64;
20
21    let mut model = EchoStateNetwork::new(
22        n_u,
23        n_y,
24        N_X,
25        0.1,
26        1.0,
27        0.9,
28        |x| x.tanh(),
29        None,
30        None,
31        1.0,
32        |x| x.clone_owned(),
33        |x| x.clone_owned(),
34        false,
35    );
36
37    let mut optimizer = Ridge::new(N_X, n_y, BETA);
38
39    model.train(&train_input, &train_expected_output, &mut optimizer);
40
41    let estimated_output = model.estimate(&test_input);
42
43    let (bits_l2_error, bits_l1_error) =
44        get_bits_error_rate(estimated_output.clone(), test_expected_output.clone());
45    let (l2_error, l1_error) =
46        get_error_rate(estimated_output.clone(), test_expected_output.clone());
47    println!("Bits Mean Squared Error: {}", bits_l2_error);
48    println!("Bits Mean Absolute Error: {}", bits_l1_error);
49    println!("Mean Squared Error: {}", l2_error);
50    println!("Mean Absolute Error: {}", l1_error);
51
52    let y_estimated = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
53    let y_expected = test_expected_output
54        .clone()
55        .into_iter()
56        .flatten()
57        .collect::<Vec<f64>>();
58
59    plotter::plot(
60        "XOR",
61        (0..TEST_STEP).map(|v| v as f64).collect::<Vec<f64>>(),
62        vec![y_expected, y_estimated],
63        vec!["Expected".to_string(), "Output".to_string()],
64        Some(&path),
65    )
66    .unwrap();
67
68    write_as_serde(
69        model,
70        optimizer,
71        &train_input,
72        &train_expected_output,
73        &test_input,
74        &test_expected_output,
75        estimated_output,
76        None,
77    );
78}