1use echo_state_network::*;
2use rand::prelude::*;
3
4const TRAIN_STEP: usize = 5000;
5const TEST_STEP: usize = 100;
6const N_X: u64 = 100;
7const BETA: f64 = 0.0;
8
9const RANDOM_SEED: u64 = 41;
10const TEST_RANDOM_SEED: u64 = 91;
11
12fn main() {
13 let (train_input, train_expected_output) = data_gen(TRAIN_STEP, RANDOM_SEED);
14 let (test_input, test_expected_output) = data_gen(TEST_STEP, TEST_RANDOM_SEED);
15
16 let path = format!("{}/examples/graph", env!("CARGO_MANIFEST_DIR"));
17
18 let n_u = train_input.first().unwrap().len() as u64;
19 let n_y = train_expected_output.first().unwrap().len() as u64;
20
21 let mut model = EchoStateNetwork::new(
22 n_u,
23 n_y,
24 N_X,
25 0.1,
26 1.0,
27 0.9,
28 |x| x.tanh(),
29 None,
30 None,
31 1.0,
32 |x| x.clone_owned(),
33 |x| x.clone_owned(),
34 false,
35 );
36
37 let mut optimizer = Ridge::new(N_X, n_y, BETA);
38
39 model.train(&train_input, &train_expected_output, &mut optimizer);
40
41 let estimated_output = model.estimate(&test_input);
42
43 let (bits_l2_error, bits_l1_error) =
44 get_bits_error_rate(estimated_output.clone(), test_expected_output.clone());
45 let (l2_error, l1_error) =
46 get_error_rate(estimated_output.clone(), test_expected_output.clone());
47 println!("Bits Mean Squared Error: {}", bits_l2_error);
48 println!("Bits Mean Absolute Error: {}", bits_l1_error);
49 println!("Mean Squared Error: {}", l2_error);
50 println!("Mean Absolute Error: {}", l1_error);
51
52 let y_estimated = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
53 let y_expected = test_expected_output
54 .clone()
55 .into_iter()
56 .flatten()
57 .collect::<Vec<f64>>();
58
59 plotter::plot(
60 "XOR",
61 (0..TEST_STEP).map(|v| v as f64).collect::<Vec<f64>>(),
62 vec![y_expected, y_estimated],
63 vec!["Expected".to_string(), "Output".to_string()],
64 Some(&path),
65 )
66 .unwrap();
67
68 write_as_serde(
69 model,
70 optimizer,
71 &train_input,
72 &train_expected_output,
73 &test_input,
74 &test_expected_output,
75 estimated_output,
76 None,
77 );
78}
79
80fn data_gen(step: usize, seed: u64) -> (Vec<Vec<f64>>, Vec<Vec<f64>>) {
81 let tau = 2;
82
83 let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
84
85 let train_input_vec = (0..step)
86 .map(|_| vec![rng.gen_range(0..2) as f64])
87 .collect::<Vec<Vec<f64>>>();
88
89 let mut expected_output_vec = vec![vec![0.0]; step];
90 for n in tau..step {
91 expected_output_vec[n][0] =
92 ((train_input_vec[n - 1][0] as u32) ^ (train_input_vec[n - 2][0] as u32)) as f64;
93 }
94
95 (train_input_vec, expected_output_vec)
96}
97
98fn get_bits_error_rate(
99 estimated_output: Vec<Vec<f64>>,
100 expected_output: Vec<Vec<f64>>,
101) -> (f64, f64) {
102 let mut y_tested_binary = vec![0.0; estimated_output.len()];
103
104 for (n, estimated) in estimated_output.iter().enumerate() {
105 if estimated[0] > 0.5 {
106 y_tested_binary[n] = 1.0;
107 } else {
108 y_tested_binary[n] = 0.0;
109 }
110 }
111
112 let expected_output = expected_output.into_iter().flatten().collect::<Vec<f64>>();
113
114 let mse = mean_squared_error(&expected_output, &y_tested_binary);
115 let mae = mean_absolute_error(&expected_output, &y_tested_binary);
116
117 (mse, mae)
118}
119
120fn get_error_rate(estimated_output: Vec<Vec<f64>>, expected_output: Vec<Vec<f64>>) -> (f64, f64) {
121 let estimated_output = estimated_output.iter().map(|x| x[0]).collect::<Vec<f64>>();
122 let expected_output = expected_output.into_iter().flatten().collect::<Vec<f64>>();
123
124 let mse = mean_squared_error(&expected_output, &estimated_output);
125 let mae = mean_absolute_error(&expected_output, &estimated_output);
126
127 (mse, mae)
128}