1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*!
K-means example

[Overview](https://en.wikipedia.org/wiki/K-means_clustering).

# K means

The following code creates two 2-dimensional gaussian distributions and then draws samples
from them to create some data which is then assigned to clusters

```
use easy_ml::matrices::Matrix;
use easy_ml::distributions::MultivariateGaussian;

use rand::{Rng, SeedableRng};

use textplots::{Chart, Plot, Shape};

/**
 * Utility function to create a list of random numbers.
 */
fn n_random_numbers<R: Rng>(random_generator: &mut R, n: usize) -> Vec<f64> {
    let mut random_numbers = Vec::with_capacity(n);
    for _ in 0..n {
        random_numbers.push(random_generator.gen::<f64>());
    }
    random_numbers
}

// use a fixed seed non cryptographically secure random generator from the rand crate
let mut random_generator = rand_chacha::ChaCha8Rng::seed_from_u64(11);

// define two cluster centres using two 2d gaussians, making sure they overlap a bit
let cluster1 = MultivariateGaussian::new(
    Matrix::column(vec![ 2.0, 3.0 ]),
    Matrix::from(vec![
        vec![ 1.0, 0.1 ],
        vec![ 0.1, 1.0 ]]));

// make the second cluster more spread out so there will be a bit of overlap with the first
// in the (0,0) to (1, 1) area
let cluster2 = MultivariateGaussian::new(
    Matrix::column(vec![ -2.0, -1.0 ]),
    Matrix::from(vec![
        vec![ 2.5, 1.2 ],
        vec![ 1.2, 2.5 ]]));

// Generate 200 points for each cluster
let points = 200;
let mut random_numbers = n_random_numbers(&mut random_generator, points * 2);
let cluster1_points = cluster1.draw(&mut random_numbers.drain(..), points).unwrap();
let mut random_numbers = n_random_numbers(&mut random_generator, points * 2);
let cluster2_points = cluster2.draw(&mut random_numbers.drain(..), points).unwrap();

// Plot the generated data into a scatter plot
// There are two clear clusters around the means (of cluster1 and cluster2) but
// many points in the middle are ambiguous, this was deliberate in the choice of
// parameters to generate the data with, as if our data was linearly seperable we
// wouldn't need to perform clustering on it in the first place. Note that, as an unsupervised
// learning method, k-means does not find or try to find a 'right' clustering for arbitary data
println!("Generated data points");
// textplots expects a Vec<(f32, f32)> where each tuple is a (x,y) point to plot,
// so we must transform the data from the cluster points slightly to plot
let scatter_points = cluster1_points.column_iter(0)
    // zip is used to merge the x and y columns in the cluster points into a single tuple
    .zip(cluster1_points.column_iter(1))
    // chain then links the two iterators together so after all of cluster1_points
    // are consumed we use all of cluster2_points
    .chain(cluster2_points.column_iter(0).zip(cluster2_points.column_iter(1)))
    // finally we map the tuples of (f64, f64) into (f32, f32) for handing to the library
    .map(|(x, y)| (x as f32, y as f32))
    .collect::<Vec<(f32, f32)>>();
Chart::new(180, 60, -8.0, 8.0)
    .lineplot(Shape::Points(&scatter_points))
    .display();


// pick seeds to start each cluster at, in this case we start the seeds at a fixed position
// of (1, 0) and (0, 1) which is deliberately where the two clusters overlap
let mut clusters = Matrix::from(vec![
    vec![ 1.0, 0.0 ],
    vec![ 0.0, 1.0 ]]);

// construct a matrix of rows in the format [x, y, cluster] to contain all the points
let mut points = {
    let mut points = cluster1_points;
    // copy each row of cluster2_points into points
    for row in 0..cluster2_points.rows() {
        // insert each row from cluster2_points to the end of points
        points.insert_row_with(points.rows(), cluster2_points.row_iter(row));
    }
    // extend points from rows of [x, y] to [x, y, cluster] for use in the update loop
    points.insert_column(2, -1.0);
    points
};

// give a name for the meaning of each column in the points matrix
const X: usize = 0;
const Y: usize = 1;
const CLUSTER: usize = 2;

// set a threshold at which we consider the cluster centres to have converged
const CHANGE_THRESHOLD: f64 = 0.001;

// track how much the means have changed each update
let mut absolute_changes = -1.0;

// track where the clusters move over time for plotting
let mut cluster_center_1_history = Vec::with_capacity(7);
let mut cluster_center_2_history = Vec::with_capacity(7);

// loop until we go under the CHANGE_THRESHOLD, reassigning points to the nearest
// cluster then cluster centres to their mean of points
while absolute_changes == -1.0 || absolute_changes > CHANGE_THRESHOLD {
    println!("Cluster centres: ({},{}), ({},{})",
        clusters.get(0, X), clusters.get(0, Y),
        clusters.get(1, X), clusters.get(1, Y));
    cluster_center_1_history.push((clusters.get(0, X) as f32, clusters.get(0, Y) as f32));
    cluster_center_2_history.push((clusters.get(1, X) as f32, clusters.get(1, Y) as f32));

    // assign each point to the nearest cluster centre by euclidean distance
    for point in 0..points.rows() {
        let x = points.get(point, X);
        let y = points.get(point, Y);
        let mut closest_cluster = -1.0;
        let mut least_squared_distance = std::f64::MAX;
        for cluster in 0..clusters.rows() {
            let cx = clusters.get(cluster, X);
            let cy = clusters.get(cluster, Y);
            // we don't actually need to square the distances for finding
            // which is least because least squared distance is the same as
            // least distance
            let squared_distance = (x - cx).powi(2) + (y - cy).powi(2);
            if squared_distance < least_squared_distance {
                closest_cluster = cluster as f64;
                least_squared_distance = squared_distance;
            }
        }
        // save the cluster that is closest to each point
        points.set(point, CLUSTER, closest_cluster);
    }
    // update cluster centres to the mean of their points
    absolute_changes = 0.0;
    for cluster in 0..clusters.rows() {
        // construct a list of the points this cluster owns
        let owned = points.column_iter(CLUSTER)
            // zip together the cluster id in each point with their X, Y points
            .zip(points.column_reference_iter(X).zip(points.column_reference_iter(Y)))
            // exclude the points that aren't assigned to this cluster
            .filter(|(id, (x, y))| (*id as usize) == cluster)
            // drop the cluster ids from each item
            .map(|(id, (x, y))| (x, y))
            // collect into a vector of tuples
            .collect::<Vec<(&f64, &f64)>>();
        let total = owned.len() as f64;
        let mean_x = owned.iter().map(|(&x, _)| x).sum::<f64>() / total;
        let mean_y = owned.iter().map(|(_, &y)| y).sum::<f64>() / total;
        // track the absolute difference between the new mean and the old one
        // so we know when to stop updating the clusters
        absolute_changes += (clusters.get(cluster, X) - mean_x).abs();
        absolute_changes += (clusters.get(cluster, Y) - mean_y).abs();
        // set the new mean x and y for this cluster
        clusters.set(cluster, X, mean_x);
        clusters.set(cluster, Y, mean_y);
    }
}
println!("Cluster centres: ({},{}), ({},{})",
    clusters.get(0, X), clusters.get(0, Y),
    clusters.get(1, X), clusters.get(1, Y));
cluster_center_1_history.push((clusters.get(0, X) as f32, clusters.get(0, Y) as f32));
cluster_center_2_history.push((clusters.get(1, X) as f32, clusters.get(1, Y) as f32));

println!("Cluster centre movements");
Chart::new(180, 60, -8.0, 8.0)
    .lineplot(Shape::Points(&scatter_points))
    .lineplot(Shape::Lines(&cluster_center_1_history))
    .lineplot(Shape::Lines(&cluster_center_2_history))
    .display();

```
*/