1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*!
K-means example
[Overview](https://en.wikipedia.org/wiki/K-means_clustering).
# K means
The following code creates two 2-dimensional gaussian distributions and then draws samples
from them to create some data which is then assigned to clusters
```
use easy_ml::matrices::Matrix;
use easy_ml::distributions::MultivariateGaussian;
use rand::{Rng, SeedableRng};
use textplots::{Chart, Plot, Shape};
/**
* Utility function to create a list of random numbers.
*/
fn n_random_numbers<R: Rng>(random_generator: &mut R, n: usize) -> Vec<f64> {
let mut random_numbers = Vec::with_capacity(n);
for _ in 0..n {
random_numbers.push(random_generator.gen::<f64>());
}
random_numbers
}
// use a fixed seed non cryptographically secure random generator from the rand crate
let mut random_generator = rand_chacha::ChaCha8Rng::seed_from_u64(11);
// define two cluster centres using two 2d gaussians, making sure they overlap a bit
let cluster1 = MultivariateGaussian::new(
Matrix::column(vec![ 2.0, 3.0 ]),
Matrix::from(vec![
vec![ 1.0, 0.1 ],
vec![ 0.1, 1.0 ]]));
// make the second cluster more spread out so there will be a bit of overlap with the first
// in the (0,0) to (1, 1) area
let cluster2 = MultivariateGaussian::new(
Matrix::column(vec![ -2.0, -1.0 ]),
Matrix::from(vec![
vec![ 2.5, 1.2 ],
vec![ 1.2, 2.5 ]]));
// Generate 200 points for each cluster
let points = 200;
let mut random_numbers = n_random_numbers(&mut random_generator, points * 2);
let cluster1_points = cluster1.draw(&mut random_numbers.drain(..), points).unwrap();
let mut random_numbers = n_random_numbers(&mut random_generator, points * 2);
let cluster2_points = cluster2.draw(&mut random_numbers.drain(..), points).unwrap();
// Plot the generated data into a scatter plot
// There are two clear clusters around the means (of cluster1 and cluster2) but
// many points in the middle are ambiguous, this was deliberate in the choice of
// parameters to generate the data with, as if our data was linearly seperable we
// wouldn't need to perform clustering on it in the first place. Note that, as an unsupervised
// learning method, k-means does not find or try to find a 'right' clustering for arbitary data
println!("Generated data points");
// textplots expects a Vec<(f32, f32)> where each tuple is a (x,y) point to plot,
// so we must transform the data from the cluster points slightly to plot
let scatter_points = cluster1_points.column_iter(0)
// zip is used to merge the x and y columns in the cluster points into a single tuple
.zip(cluster1_points.column_iter(1))
// chain then links the two iterators together so after all of cluster1_points
// are consumed we use all of cluster2_points
.chain(cluster2_points.column_iter(0).zip(cluster2_points.column_iter(1)))
// finally we map the tuples of (f64, f64) into (f32, f32) for handing to the library
.map(|(x, y)| (x as f32, y as f32))
.collect::<Vec<(f32, f32)>>();
Chart::new(180, 60, -8.0, 8.0)
.lineplot(Shape::Points(&scatter_points))
.display();
// pick seeds to start each cluster at, in this case we start the seeds at a fixed position
// of (1, 0) and (0, 1) which is deliberately where the two clusters overlap
let mut clusters = Matrix::from(vec![
vec![ 1.0, 0.0 ],
vec![ 0.0, 1.0 ]]);
// construct a matrix of rows in the format [x, y, cluster] to contain all the points
let mut points = {
let mut points = cluster1_points;
// copy each row of cluster2_points into points
for row in 0..cluster2_points.rows() {
// insert each row from cluster2_points to the end of points
points.insert_row_with(points.rows(), cluster2_points.row_iter(row));
}
// extend points from rows of [x, y] to [x, y, cluster] for use in the update loop
points.insert_column(2, -1.0);
points
};
// give a name for the meaning of each column in the points matrix
const X: usize = 0;
const Y: usize = 1;
const CLUSTER: usize = 2;
// set a threshold at which we consider the cluster centres to have converged
const CHANGE_THRESHOLD: f64 = 0.001;
// track how much the means have changed each update
let mut absolute_changes = -1.0;
// track where the clusters move over time for plotting
let mut cluster_center_1_history = Vec::with_capacity(7);
let mut cluster_center_2_history = Vec::with_capacity(7);
// loop until we go under the CHANGE_THRESHOLD, reassigning points to the nearest
// cluster then cluster centres to their mean of points
while absolute_changes == -1.0 || absolute_changes > CHANGE_THRESHOLD {
println!("Cluster centres: ({},{}), ({},{})",
clusters.get(0, X), clusters.get(0, Y),
clusters.get(1, X), clusters.get(1, Y));
cluster_center_1_history.push((clusters.get(0, X) as f32, clusters.get(0, Y) as f32));
cluster_center_2_history.push((clusters.get(1, X) as f32, clusters.get(1, Y) as f32));
// assign each point to the nearest cluster centre by euclidean distance
for point in 0..points.rows() {
let x = points.get(point, X);
let y = points.get(point, Y);
let mut closest_cluster = -1.0;
let mut least_squared_distance = std::f64::MAX;
for cluster in 0..clusters.rows() {
let cx = clusters.get(cluster, X);
let cy = clusters.get(cluster, Y);
// we don't actually need to square the distances for finding
// which is least because least squared distance is the same as
// least distance
let squared_distance = (x - cx).powi(2) + (y - cy).powi(2);
if squared_distance < least_squared_distance {
closest_cluster = cluster as f64;
least_squared_distance = squared_distance;
}
}
// save the cluster that is closest to each point
points.set(point, CLUSTER, closest_cluster);
}
// update cluster centres to the mean of their points
absolute_changes = 0.0;
for cluster in 0..clusters.rows() {
// construct a list of the points this cluster owns
let owned = points.column_iter(CLUSTER)
// zip together the cluster id in each point with their X, Y points
.zip(points.column_reference_iter(X).zip(points.column_reference_iter(Y)))
// exclude the points that aren't assigned to this cluster
.filter(|(id, (x, y))| (*id as usize) == cluster)
// drop the cluster ids from each item
.map(|(id, (x, y))| (x, y))
// collect into a vector of tuples
.collect::<Vec<(&f64, &f64)>>();
let total = owned.len() as f64;
let mean_x = owned.iter().map(|(&x, _)| x).sum::<f64>() / total;
let mean_y = owned.iter().map(|(_, &y)| y).sum::<f64>() / total;
// track the absolute difference between the new mean and the old one
// so we know when to stop updating the clusters
absolute_changes += (clusters.get(cluster, X) - mean_x).abs();
absolute_changes += (clusters.get(cluster, Y) - mean_y).abs();
// set the new mean x and y for this cluster
clusters.set(cluster, X, mean_x);
clusters.set(cluster, Y, mean_y);
}
}
println!("Cluster centres: ({},{}), ({},{})",
clusters.get(0, X), clusters.get(0, Y),
clusters.get(1, X), clusters.get(1, Y));
cluster_center_1_history.push((clusters.get(0, X) as f32, clusters.get(0, Y) as f32));
cluster_center_2_history.push((clusters.get(1, X) as f32, clusters.get(1, Y) as f32));
println!("Cluster centre movements");
Chart::new(180, 60, -8.0, 8.0)
.lineplot(Shape::Points(&scatter_points))
.lineplot(Shape::Lines(&cluster_center_1_history))
.lineplot(Shape::Lines(&cluster_center_2_history))
.display();
```
*/