Expand description
dynalgo
dynalgo is a tiny RUST library designed to produce animated SVG images that can illustrate graph algorithms in action.
The crate offers a basic graph structure representation (nodes, links and adjacency list).
The interesting point is that each modification of the structure of the graph results in an animation in SVG with SMIL language.
Additionally, custom animations can be made by playing with the properties of graphical representations of nodes and links.
Graph’s nodes are automatically layouted according to imaginary spring forces applied to nodes. Algo module will provide basic algorithms to apply to graph.
Example n°1 :
(add nodes and links, and then play with their graphical representation as SVG elements. Finally, display the resulting animation as an animated SVG in a HTML page)
use dynalgo::graph::Graph;
use std::fs::File;
use std::io::Write;
let mut graph = Graph::new();
graph.svg_automatic_layout(false);
graph.svg_automatic_animation(false);
graph.node_add('A', None);
graph.node_add('B', None);
graph.node_add('C', None);
graph.link_add('α', 'A', 'B', true, Some(10));
graph.link_add('β', 'B', 'C', true, Some(20));
graph.link_add('γ', 'C', 'A', true, Some(30));
graph.svg_automatic_animation(true);
graph.svg_layout();
graph.svg_automatic_layout(true);
graph.nodes_exchange('A', 'B');
graph.svg_node_color('A', 0,128,0);
graph.svg_node_color('C' ,128,0,0);
graph.link_delete('γ');
graph.node_delete('B');
graph.node_add('D', None);
graph.link_add('δ', 'C', 'D', false, Some(40));
graph.link_add('ε', 'D', 'A', false, Some(50));
graph.svg_node_selected('D',true);
graph.svg_link_selected('δ',true);
graph.svg_link_selected('ε',true);
let html = graph.svg_render_animation_html("This is the example n°1");
write!(File::create("example-1.html").unwrap(), "{}", html);Example n°2 :
(build a graph from a formatted String, and then DFS algorithm traverses it. Finally the traversed graph is layouted as an animated SVG in a HTML page)
use dynalgo::graph::Graph;
use dynalgo::algo::travers::Dfs;
use std::fs::File;
use std::io::Write;
let mut graph = Graph::new();
let dyna = String::from(
"N A _ _ 1
N B _ _ 2
N C _ _ 3
N D _ _ 4
N E _ _ 5
N F _ _ 6
N G _ _ 7
N H _ _ 8
N I _ _ 9
N J _ _ _
N K _ _ 11
N L _ _ 12
N M _ _ _
N N _ _ 14
N O _ _ 15
N P _ _ 16
N Q _ _ 17
N R _ _ 18
N S _ _ 19
N T _ _ 21
N U _ _ 22
L a B G true 1
L b F C true 2
L c B C true 3
L d C G true 4
L e G F false 5
L f F B true 6
L g F E true 7
L h F J true 8
L i E I true 9
L j I J false _
L k K J true 11
L l A J true 12
L m I A true 13
L n K G true 14
L o K D false 15
L p K H true 16
L q K L true 17
L r L M true 18
L s L S true 19
L t L O false _
L u N O true 21
L v N P true 22
L w P Q true 23
L x P R true 24
L y P T false 25
L z T U true 26"
);
graph.dyna_from(dyna);
let dfs = Dfs::new();
dfs.run(&mut graph, None);
let html = graph.svg_render_animation_html("This is the example n°2");
write!(File::create("example-2.html").unwrap(), "{}", html).unwrap(); Example n°3 :
(for fun, build a graph that represents a maze, and then use DFS algorithm to traverse it to reach arrival. Finally the maze is layouted as an animated SVG in a HTML page)
use dynalgo::algo::fun::Maze;
use std::fs::File;
use std::io::Write;
let maze = Maze::new();
let graph = maze.run(9);
let html = graph.svg_render_animation_html("This is the example n°3");
write!(File::create("example-3.html").unwrap(), "{}", html).unwrap();