Struct ds_ext::set::OrdHashSet
source · pub struct OrdHashSet<T> { /* private fields */ }
Expand description
A std::collections::HashSet
ordered by key using a List
.
This implements Deref
so that the standard comparison methods are still available.
Implementations§
source§impl<T> OrdHashSet<T>
impl<T> OrdHashSet<T>
sourcepub fn new() -> Self
pub fn new() -> Self
Construct a new OrdHashSet
.
sourcepub fn with_capacity(capacity: usize) -> Self
pub fn with_capacity(capacity: usize) -> Self
Construct a new OrdHashSet
with the given capacity
.
sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
pub fn iter(&self) -> Iter<'_, T> ⓘ
Construct an iterator over the values in this OrdHashSet
.
source§impl<T: Eq + Hash + Ord> OrdHashSet<T>
impl<T: Eq + Hash + Ord> OrdHashSet<T>
sourcepub fn bisect<Cmp>(&self, cmp: Cmp) -> Option<&T>where
Cmp: Fn(&T) -> Option<Ordering> + Copy,
pub fn bisect<Cmp>(&self, cmp: Cmp) -> Option<&T>where Cmp: Fn(&T) -> Option<Ordering> + Copy,
Bisect this set to match a key using the provided comparison, and return its value (if any).
The first key for which the comparison returns Some(Ordering::Equal)
will be returned.
This method assumes that any partially-ordered keys (where cmp(key).is_none()
) lie at the
beginning and/or end of the distribution.
sourcepub fn bisect_and_remove<Cmp>(&mut self, cmp: Cmp) -> Option<Arc<T>>where
Cmp: Fn(&T) -> Option<Ordering> + Copy,
pub fn bisect_and_remove<Cmp>(&mut self, cmp: Cmp) -> Option<Arc<T>>where Cmp: Fn(&T) -> Option<Ordering> + Copy,
Bisect this set to match and remove a key using the provided comparison.
The first key for which the comparison returns Some(Ordering::Equal)
will be returned.
This method assumes that any partially-ordered keys (where cmp(key).is_none()
) lie at the
beginning and/or end of the distribution.
sourcepub fn clear(&mut self)
pub fn clear(&mut self)
Remove all values from this OrdHashSet
.
sourcepub fn drain(&mut self) -> Drain<'_, T> ⓘ
pub fn drain(&mut self) -> Drain<'_, T> ⓘ
Drain all values from this OrdHashSet
.
sourcepub fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
pub fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)
Consume the given iter
and insert all its values into this OrdHashSet
sourcepub fn first(&self) -> Option<&Arc<T>>
pub fn first(&self) -> Option<&Arc<T>>
Borrow the first value in this OrdHashSet
.
sourcepub fn insert(&mut self, value: T) -> bool
pub fn insert(&mut self, value: T) -> bool
Insert a value
into this OrdHashSet
and return false
if it was already present.
sourcepub fn last(&self) -> Option<&Arc<T>>
pub fn last(&self) -> Option<&Arc<T>>
Borrow the last value in this OrdHashSet
.
sourcepub fn pop_first(&mut self) -> Option<Arc<T>>
pub fn pop_first(&mut self) -> Option<Arc<T>>
Remove and return the first value in this OrdHashSet
.
sourcepub fn pop_last(&mut self) -> Option<Arc<T>>
pub fn pop_last(&mut self) -> Option<Arc<T>>
Remove and return the last value in this OrdHashSet
.
sourcepub fn remove<Q>(&mut self, value: &Q) -> boolwhere
Arc<T>: Borrow<Q>,
Q: Eq + Hash + Ord,
pub fn remove<Q>(&mut self, value: &Q) -> boolwhere Arc<T>: Borrow<Q>, Q: Eq + Hash + Ord,
Remove the given value
from this OrdHashSet
and return true
if it was present.
The value may be any borrowed form of T
,
but the ordering on the borrowed form must match the ordering of T
.
sourcepub fn starts_with<'a, I: IntoIterator<Item = &'a T>>(
&'a self,
other: I
) -> boolwhere
T: PartialEq,
pub fn starts_with<'a, I: IntoIterator<Item = &'a T>>( &'a self, other: I ) -> boolwhere T: PartialEq,
Return true
if the first elements in this set are equal to those in the given iter
.
Methods from Deref<Target = Inner<Arc<T>>>§
1.0.0 · sourcepub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the number of elements the set can hold without reallocating.
Examples
use std::collections::HashSet;
let set: HashSet<i32> = HashSet::with_capacity(100);
assert!(set.capacity() >= 100);
1.0.0 · sourcepub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
An iterator visiting all elements in arbitrary order.
The iterator element type is &'a T
.
Examples
use std::collections::HashSet;
let mut set = HashSet::new();
set.insert("a");
set.insert("b");
// Will print in an arbitrary order.
for x in set.iter() {
println!("{x}");
}
Performance
In the current implementation, iterating over set takes O(capacity) time instead of O(len) because it internally visits empty buckets too.
1.0.0 · sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of elements in the set.
Examples
use std::collections::HashSet;
let mut v = HashSet::new();
assert_eq!(v.len(), 0);
v.insert(1);
assert_eq!(v.len(), 1);
1.0.0 · sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the set contains no elements.
Examples
use std::collections::HashSet;
let mut v = HashSet::new();
assert!(v.is_empty());
v.insert(1);
assert!(!v.is_empty());
1.9.0 · sourcepub fn hasher(&self) -> &S
pub fn hasher(&self) -> &S
Returns a reference to the set’s BuildHasher
.
Examples
use std::collections::HashSet;
use std::collections::hash_map::RandomState;
let hasher = RandomState::new();
let set: HashSet<i32> = HashSet::with_hasher(hasher);
let hasher: &RandomState = set.hasher();
1.0.0 · sourcepub fn difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Difference<'a, T, S>
pub fn difference<'a>( &'a self, other: &'a HashSet<T, S> ) -> Difference<'a, T, S>
Visits the values representing the difference,
i.e., the values that are in self
but not in other
.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Can be seen as `a - b`.
for x in a.difference(&b) {
println!("{x}"); // Print 1
}
let diff: HashSet<_> = a.difference(&b).collect();
assert_eq!(diff, [1].iter().collect());
// Note that difference is not symmetric,
// and `b - a` means something else:
let diff: HashSet<_> = b.difference(&a).collect();
assert_eq!(diff, [4].iter().collect());
1.0.0 · sourcepub fn symmetric_difference<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> SymmetricDifference<'a, T, S>
pub fn symmetric_difference<'a>( &'a self, other: &'a HashSet<T, S> ) -> SymmetricDifference<'a, T, S>
Visits the values representing the symmetric difference,
i.e., the values that are in self
or in other
but not in both.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 1, 4 in arbitrary order.
for x in a.symmetric_difference(&b) {
println!("{x}");
}
let diff1: HashSet<_> = a.symmetric_difference(&b).collect();
let diff2: HashSet<_> = b.symmetric_difference(&a).collect();
assert_eq!(diff1, diff2);
assert_eq!(diff1, [1, 4].iter().collect());
1.0.0 · sourcepub fn intersection<'a>(
&'a self,
other: &'a HashSet<T, S>
) -> Intersection<'a, T, S>
pub fn intersection<'a>( &'a self, other: &'a HashSet<T, S> ) -> Intersection<'a, T, S>
Visits the values representing the intersection,
i.e., the values that are both in self
and other
.
When an equal element is present in self
and other
then the resulting Intersection
may yield references to
one or the other. This can be relevant if T
contains fields which
are not compared by its Eq
implementation, and may hold different
value between the two equal copies of T
in the two sets.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 2, 3 in arbitrary order.
for x in a.intersection(&b) {
println!("{x}");
}
let intersection: HashSet<_> = a.intersection(&b).collect();
assert_eq!(intersection, [2, 3].iter().collect());
1.0.0 · sourcepub fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>
pub fn union<'a>(&'a self, other: &'a HashSet<T, S>) -> Union<'a, T, S>
Visits the values representing the union,
i.e., all the values in self
or other
, without duplicates.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let b = HashSet::from([4, 2, 3, 4]);
// Print 1, 2, 3, 4 in arbitrary order.
for x in a.union(&b) {
println!("{x}");
}
let union: HashSet<_> = a.union(&b).collect();
assert_eq!(union, [1, 2, 3, 4].iter().collect());
1.0.0 · sourcepub fn contains<Q>(&self, value: &Q) -> boolwhere
T: Borrow<Q>,
Q: Hash + Eq + ?Sized,
pub fn contains<Q>(&self, value: &Q) -> boolwhere T: Borrow<Q>, Q: Hash + Eq + ?Sized,
Returns true
if the set contains a value.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let set = HashSet::from([1, 2, 3]);
assert_eq!(set.contains(&1), true);
assert_eq!(set.contains(&4), false);
1.9.0 · sourcepub fn get<Q>(&self, value: &Q) -> Option<&T>where
T: Borrow<Q>,
Q: Hash + Eq + ?Sized,
pub fn get<Q>(&self, value: &Q) -> Option<&T>where T: Borrow<Q>, Q: Hash + Eq + ?Sized,
Returns a reference to the value in the set, if any, that is equal to the given value.
The value may be any borrowed form of the set’s value type, but
Hash
and Eq
on the borrowed form must match those for
the value type.
Examples
use std::collections::HashSet;
let set = HashSet::from([1, 2, 3]);
assert_eq!(set.get(&2), Some(&2));
assert_eq!(set.get(&4), None);
1.0.0 · sourcepub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool
pub fn is_disjoint(&self, other: &HashSet<T, S>) -> bool
Returns true
if self
has no elements in common with other
.
This is equivalent to checking for an empty intersection.
Examples
use std::collections::HashSet;
let a = HashSet::from([1, 2, 3]);
let mut b = HashSet::new();
assert_eq!(a.is_disjoint(&b), true);
b.insert(4);
assert_eq!(a.is_disjoint(&b), true);
b.insert(1);
assert_eq!(a.is_disjoint(&b), false);
1.0.0 · sourcepub fn is_subset(&self, other: &HashSet<T, S>) -> bool
pub fn is_subset(&self, other: &HashSet<T, S>) -> bool
Returns true
if the set is a subset of another,
i.e., other
contains at least all the values in self
.
Examples
use std::collections::HashSet;
let sup = HashSet::from([1, 2, 3]);
let mut set = HashSet::new();
assert_eq!(set.is_subset(&sup), true);
set.insert(2);
assert_eq!(set.is_subset(&sup), true);
set.insert(4);
assert_eq!(set.is_subset(&sup), false);
1.0.0 · sourcepub fn is_superset(&self, other: &HashSet<T, S>) -> bool
pub fn is_superset(&self, other: &HashSet<T, S>) -> bool
Returns true
if the set is a superset of another,
i.e., self
contains at least all the values in other
.
Examples
use std::collections::HashSet;
let sub = HashSet::from([1, 2]);
let mut set = HashSet::new();
assert_eq!(set.is_superset(&sub), false);
set.insert(0);
set.insert(1);
assert_eq!(set.is_superset(&sub), false);
set.insert(2);
assert_eq!(set.is_superset(&sub), true);