pub struct Dname { /* private fields */ }Expand description
An uncompressed, absolute domain name.
The type wraps a Bytes value and guarantees that it always contains
a correctly encoded, absolute domain name. It derefs to Bytes and
therefore to [u8] allowing you direct access to the underlying byte
slice. It does overide all applicable methods providing access to parts
of the byte slice, though, returning either Dname or RelativeDnames
instead.
You can construct a domain name from a string via the FromStr trait or
manually via a DnameBuilder. In addition, you can also parse it from
a message. This will, however, require the name to be uncompressed.
Implementations§
Source§impl Dname
§Creation and Conversion
impl Dname
§Creation and Conversion
Sourcepub fn root() -> Self
pub fn root() -> Self
Creates a domain name representing the root.
The resulting domain name will consist of the root label only.
Sourcepub fn from_bytes(bytes: Bytes) -> Result<Self, DnameBytesError>
pub fn from_bytes(bytes: Bytes) -> Result<Self, DnameBytesError>
Creates a domain name from a bytes value.
This will only succeed if bytes contains a properly encoded
absolute domain name. Because the function checks, this will take
a wee bit of time.
Sourcepub fn from_slice(s: &[u8]) -> Result<Self, DnameBytesError>
pub fn from_slice(s: &[u8]) -> Result<Self, DnameBytesError>
Creates a domain name from a byte slice.
The function will create a new bytes value from the slice’s content. If the slice does not contain a correctly encoded, absolute domain name, the function will fail.
Sourcepub fn from_chars<C>(chars: C) -> Result<Self, FromStrError>where
C: IntoIterator<Item = char>,
pub fn from_chars<C>(chars: C) -> Result<Self, FromStrError>where
C: IntoIterator<Item = char>,
Creates a domain name from a sequence of characters.
The sequence must result in a domain name in master format representation. That is, its labels should be separated by dots. Actual dots, white space and backslashes should be escaped by a preceeding backslash, and any byte value that is not a printable ASCII character should be encoded by a backslash followed by its three digit decimal value.
The name will always be an absolute name. If the last character in the
sequence is not a dot, the function will quietly add a root label,
anyway. In most cases, this is likely what you want. If it isn’t,
though, use UncertainDname instead to be able to check.
Sourcepub fn into_bytes(self) -> Bytes
pub fn into_bytes(self) -> Bytes
Converts the domain name into its underlying bytes value.
Sourcepub fn into_relative(self) -> RelativeDname
pub fn into_relative(self) -> RelativeDname
Converts the name into a relative name by dropping the root label.
Source§impl Dname
§Properties
More of the usual methods on byte sequences, such as
len, are available via
deref to Bytes.
impl Dname
§Properties
More of the usual methods on byte sequences, such as
len, are available via
deref to Bytes.
Source§impl Dname
§Working with Labels
impl Dname
§Working with Labels
Sourcepub fn iter_suffixes(&self) -> SuffixIter
pub fn iter_suffixes(&self) -> SuffixIter
Returns an iterator over the suffixes of the name.
The returned iterator starts with the full name and then for each additional step returns a name with the left-most label stripped off until it reaches the root label.
Sourcepub fn label_count(&self) -> usize
pub fn label_count(&self) -> usize
Returns the number of labels in the domain name.
Sourcepub fn last(&self) -> &'static Label
pub fn last(&self) -> &'static Label
Returns a reference to the last label.
Because the last label in an absolute name is always the root label, this method can return a static reference. It is also a wee bit silly, but here for completeness.
Sourcepub fn starts_with<'a, N: ToLabelIter<'a>>(&'a self, base: &'a N) -> bool
pub fn starts_with<'a, N: ToLabelIter<'a>>(&'a self, base: &'a N) -> bool
Determines whether base is a prefix of self.
Sourcepub fn ends_with<'a, N: ToLabelIter<'a>>(&'a self, base: &'a N) -> bool
pub fn ends_with<'a, N: ToLabelIter<'a>>(&'a self, base: &'a N) -> bool
Determines whether base is a suffix of self.
Sourcepub fn is_label_start(&self, index: usize) -> bool
pub fn is_label_start(&self, index: usize) -> bool
Returns whether an index points to the first byte of a non-root label.
Sourcepub fn slice(&self, begin: usize, end: usize) -> RelativeDname
pub fn slice(&self, begin: usize, end: usize) -> RelativeDname
Returns the part of the name indicated by start and end positions.
The returned name will start at position begin and end right before
position end. Both positions must point to the begining of a label.
§Panics
The method panics if either position is not the start of a label or is out of bounds.
Because the returned domain name is relative, the method will also
panic if the end is equal to the length of the name. If you
want to slice the entire end of the name including the final root
label, you can use slice_from() instead.
Sourcepub fn slice_from(&self, begin: usize) -> Self
pub fn slice_from(&self, begin: usize) -> Self
Returns the part of the name starting at the given position.
§Panics
The method panics if begin isn’t the index of the beginning of a
label or is out of bounds.
Sourcepub fn slice_to(&self, end: usize) -> RelativeDname
pub fn slice_to(&self, end: usize) -> RelativeDname
Returns the part of the name ending at the given position.
§Panics
The method panics if end is not the beginning of a label or is out
of bounds. Because the returned domain name is relative, the method
will also panic if the end is equal to the length of the name.
Sourcepub fn split_off(self, mid: usize) -> (RelativeDname, Dname)
pub fn split_off(self, mid: usize) -> (RelativeDname, Dname)
Splits the name into two at the given position.
Unlike the version on Bytes, the method consumes self since the
left side needs to be converted into a RelativeDname.
Consequently, it returns a pair of the left and right parts.
§Panics
The method will panic if mid is not the index of the beginning of
a label or if it is out of bounds.
Sourcepub fn split_to(&mut self, mid: usize) -> RelativeDname
pub fn split_to(&mut self, mid: usize) -> RelativeDname
Splits the name into two at the given position.
Afterwards, self will contain the name starting at the position
while the name ending right before it will be returned.
§Panics
The method will panic if mid is not the start of a new label or is
out of bounds.
Sourcepub fn truncate(self, len: usize) -> RelativeDname
pub fn truncate(self, len: usize) -> RelativeDname
Truncates the name before len.
Because truncating converts the name into a relative name, the method consumes self.
§Panics
The method will panic if len is not the index of a new label or if
it is out of bounds.
Sourcepub fn split_first(&mut self) -> Option<RelativeDname>
pub fn split_first(&mut self) -> Option<RelativeDname>
Splits off the first label.
If this name is longer than just the root label, returns the first
label as a relative name and removes it from the name itself. If the
name is only the root label, returns None and does nothing.
Sourcepub fn parent(&mut self) -> bool
pub fn parent(&mut self) -> bool
Reduces the name to the parent of the current name.
If the name consists of the root label only, returns false and does
nothing. Otherwise, drops the first label and returns true.
Sourcepub fn strip_suffix<N: ToDname>(self, base: &N) -> Result<RelativeDname, Dname>
pub fn strip_suffix<N: ToDname>(self, base: &N) -> Result<RelativeDname, Dname>
Strips the suffix base from the domain name.
If base is indeed a suffix, returns a relative domain name with the
remainder of the name. Otherwise, returns an error with an unmodified
self.
Methods from Deref<Target = Bytes>§
Sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the number of bytes contained in this Bytes.
§Examples
use bytes::Bytes;
let b = Bytes::from(&b"hello"[..]);
assert_eq!(b.len(), 5);Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the Bytes has a length of 0.
§Examples
use bytes::Bytes;
let b = Bytes::new();
assert!(b.is_empty());Sourcepub fn slice(&self, begin: usize, end: usize) -> Bytes
pub fn slice(&self, begin: usize, end: usize) -> Bytes
Returns a slice of self for the index range [begin..end).
This will increment the reference count for the underlying memory and
return a new Bytes handle set to the slice.
This operation is O(1).
§Examples
use bytes::Bytes;
let a = Bytes::from(&b"hello world"[..]);
let b = a.slice(2, 5);
assert_eq!(&b[..], b"llo");§Panics
Requires that begin <= end and end <= self.len(), otherwise slicing
will panic.
Sourcepub fn slice_from(&self, begin: usize) -> Bytes
pub fn slice_from(&self, begin: usize) -> Bytes
Returns a slice of self for the index range [begin..self.len()).
This will increment the reference count for the underlying memory and
return a new Bytes handle set to the slice.
This operation is O(1) and is equivalent to self.slice(begin, self.len()).
§Examples
use bytes::Bytes;
let a = Bytes::from(&b"hello world"[..]);
let b = a.slice_from(6);
assert_eq!(&b[..], b"world");§Panics
Requires that begin <= self.len(), otherwise slicing will panic.
Sourcepub fn slice_to(&self, end: usize) -> Bytes
pub fn slice_to(&self, end: usize) -> Bytes
Returns a slice of self for the index range [0..end).
This will increment the reference count for the underlying memory and
return a new Bytes handle set to the slice.
This operation is O(1) and is equivalent to self.slice(0, end).
§Examples
use bytes::Bytes;
let a = Bytes::from(&b"hello world"[..]);
let b = a.slice_to(5);
assert_eq!(&b[..], b"hello");§Panics
Requires that end <= self.len(), otherwise slicing will panic.
Sourcepub fn slice_ref(&self, subset: &[u8]) -> Bytes
pub fn slice_ref(&self, subset: &[u8]) -> Bytes
Returns a slice of self that is equivalent to the given subset.
When processing a Bytes buffer with other tools, one often gets a
&[u8] which is in fact a slice of the Bytes, i.e. a subset of it.
This function turns that &[u8] into another Bytes, as if one had
called self.slice() with the offsets that correspond to subset.
This operation is O(1).
§Examples
use bytes::Bytes;
let bytes = Bytes::from(&b"012345678"[..]);
let as_slice = bytes.as_ref();
let subset = &as_slice[2..6];
let subslice = bytes.slice_ref(&subset);
assert_eq!(&subslice[..], b"2345");§Panics
Requires that the given sub slice is in fact contained within the
Bytes buffer; otherwise this function will panic.
Methods from Deref<Target = [u8]>§
1.23.0 · Sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all bytes in this slice are within the ASCII range.
Sourcepub fn as_ascii(&self) -> Option<&[AsciiChar]>
🔬This is a nightly-only experimental API. (ascii_char)
pub fn as_ascii(&self) -> Option<&[AsciiChar]>
ascii_char)If this slice is_ascii, returns it as a slice of
ASCII characters, otherwise returns None.
Sourcepub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
🔬This is a nightly-only experimental API. (ascii_char)
pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
ascii_char)Converts this slice of bytes into a slice of ASCII characters, without checking whether they’re valid.
§Safety
Every byte in the slice must be in 0..=127, or else this is UB.
1.23.0 · Sourcepub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
Checks that two slices are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
1.60.0 · Sourcepub fn escape_ascii(&self) -> EscapeAscii<'_>
pub fn escape_ascii(&self) -> EscapeAscii<'_>
Returns an iterator that produces an escaped version of this slice, treating it as an ASCII string.
§Examples
let s = b"0\t\r\n'\"\\\x9d";
let escaped = s.escape_ascii().to_string();
assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");1.80.0 · Sourcepub fn trim_ascii_start(&self) -> &[u8] ⓘ
pub fn trim_ascii_start(&self) -> &[u8] ⓘ
Returns a byte slice with leading ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!(b" \t hello world\n".trim_ascii_start(), b"hello world\n");
assert_eq!(b" ".trim_ascii_start(), b"");
assert_eq!(b"".trim_ascii_start(), b"");1.80.0 · Sourcepub fn trim_ascii_end(&self) -> &[u8] ⓘ
pub fn trim_ascii_end(&self) -> &[u8] ⓘ
Returns a byte slice with trailing ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!(b"\r hello world\n ".trim_ascii_end(), b"\r hello world");
assert_eq!(b" ".trim_ascii_end(), b"");
assert_eq!(b"".trim_ascii_end(), b"");1.80.0 · Sourcepub fn trim_ascii(&self) -> &[u8] ⓘ
pub fn trim_ascii(&self) -> &[u8] ⓘ
Returns a byte slice with leading and trailing ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace.
§Examples
assert_eq!(b"\r hello world\n ".trim_ascii(), b"hello world");
assert_eq!(b" ".trim_ascii(), b"");
assert_eq!(b"".trim_ascii(), b"");1.0.0 · Sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true if the slice has a length of 0.
§Examples
let a = [1, 2, 3];
assert!(!a.is_empty());
let b: &[i32] = &[];
assert!(b.is_empty());1.0.0 · Sourcepub fn first(&self) -> Option<&T>
pub fn first(&self) -> Option<&T>
Returns the first element of the slice, or None if it is empty.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());
let w: &[i32] = &[];
assert_eq!(None, w.first());1.5.0 · Sourcepub fn split_first(&self) -> Option<(&T, &[T])>
pub fn split_first(&self) -> Option<(&T, &[T])>
Returns the first and all the rest of the elements of the slice, or None if it is empty.
§Examples
let x = &[0, 1, 2];
if let Some((first, elements)) = x.split_first() {
assert_eq!(first, &0);
assert_eq!(elements, &[1, 2]);
}1.5.0 · Sourcepub fn split_last(&self) -> Option<(&T, &[T])>
pub fn split_last(&self) -> Option<(&T, &[T])>
Returns the last and all the rest of the elements of the slice, or None if it is empty.
§Examples
let x = &[0, 1, 2];
if let Some((last, elements)) = x.split_last() {
assert_eq!(last, &2);
assert_eq!(elements, &[0, 1]);
}1.0.0 · Sourcepub fn last(&self) -> Option<&T>
pub fn last(&self) -> Option<&T>
Returns the last element of the slice, or None if it is empty.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());
let w: &[i32] = &[];
assert_eq!(None, w.last());1.77.0 · Sourcepub fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>
pub fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>
Returns an array reference to the first N items in the slice.
If the slice is not at least N in length, this will return None.
§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
let v: &[i32] = &[10];
assert_eq!(None, v.first_chunk::<2>());
let w: &[i32] = &[];
assert_eq!(Some(&[]), w.first_chunk::<0>());1.77.0 · Sourcepub fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>
pub fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>
Returns an array reference to the first N items in the slice and the remaining slice.
If the slice is not at least N in length, this will return None.
§Examples
let x = &[0, 1, 2];
if let Some((first, elements)) = x.split_first_chunk::<2>() {
assert_eq!(first, &[0, 1]);
assert_eq!(elements, &[2]);
}
assert_eq!(None, x.split_first_chunk::<4>());1.77.0 · Sourcepub fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>
pub fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>
Returns an array reference to the last N items in the slice and the remaining slice.
If the slice is not at least N in length, this will return None.
§Examples
let x = &[0, 1, 2];
if let Some((elements, last)) = x.split_last_chunk::<2>() {
assert_eq!(elements, &[0]);
assert_eq!(last, &[1, 2]);
}
assert_eq!(None, x.split_last_chunk::<4>());1.77.0 · Sourcepub fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>
pub fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>
Returns an array reference to the last N items in the slice.
If the slice is not at least N in length, this will return None.
§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
let v: &[i32] = &[10];
assert_eq!(None, v.last_chunk::<2>());
let w: &[i32] = &[];
assert_eq!(Some(&[]), w.last_chunk::<0>());1.0.0 · Sourcepub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
Noneif out of bounds. - If given a range, returns the subslice corresponding to that range,
or
Noneif out of bounds.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));1.0.0 · Sourcepub unsafe fn get_unchecked<I>(
&self,
index: I,
) -> &<I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
pub unsafe fn get_unchecked<I>(
&self,
index: I,
) -> &<I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
For a safe alternative see get.
§Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
You can think of this like .get(index).unwrap_unchecked(). It’s UB
to call .get_unchecked(len), even if you immediately convert to a
pointer. And it’s UB to call .get_unchecked(..len + 1),
.get_unchecked(..=len), or similar.
§Examples
let x = &[1, 2, 4];
unsafe {
assert_eq!(x.get_unchecked(1), &2);
}1.0.0 · Sourcepub fn as_ptr(&self) -> *const T
pub fn as_ptr(&self) -> *const T
Returns a raw pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up dangling.
The caller must also ensure that the memory the pointer (non-transitively) points to
is never written to (except inside an UnsafeCell) using this pointer or any pointer
derived from it. If you need to mutate the contents of the slice, use as_mut_ptr.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
§Examples
let x = &[1, 2, 4];
let x_ptr = x.as_ptr();
unsafe {
for i in 0..x.len() {
assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
}
}1.48.0 · Sourcepub fn as_ptr_range(&self) -> Range<*const T>
pub fn as_ptr_range(&self) -> Range<*const T>
Returns the two raw pointers spanning the slice.
The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.
See as_ptr for warnings on using these pointers. The end pointer
requires extra caution, as it does not point to a valid element in the
slice.
This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.
It can also be useful to check if a pointer to an element refers to an element of this slice:
let a = [1, 2, 3];
let x = &a[1] as *const _;
let y = &5 as *const _;
assert!(a.as_ptr_range().contains(&x));
assert!(!a.as_ptr_range().contains(&y));Sourcepub fn as_array<const N: usize>(&self) -> Option<&[T; N]>
🔬This is a nightly-only experimental API. (slice_as_array)
pub fn as_array<const N: usize>(&self) -> Option<&[T; N]>
slice_as_array)Gets a reference to the underlying array.
If N is not exactly equal to the length of self, then this method returns None.
1.0.0 · Sourcepub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
Returns an iterator over the slice.
The iterator yields all items from start to end.
§Examples
let x = &[1, 2, 4];
let mut iterator = x.iter();
assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);1.0.0 · Sourcepub fn windows(&self, size: usize) -> Windows<'_, T>
pub fn windows(&self, size: usize) -> Windows<'_, T>
Returns an iterator over all contiguous windows of length
size. The windows overlap. If the slice is shorter than
size, the iterator returns no values.
§Panics
Panics if size is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.windows(3);
assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
assert!(iter.next().is_none());If the slice is shorter than size:
let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());Because the Iterator trait cannot represent the required lifetimes,
there is no windows_mut analog to windows;
[0,1,2].windows_mut(2).collect() would violate the rules of references
(though a LendingIterator analog is possible). You can sometimes use
Cell::as_slice_of_cells in
conjunction with windows instead:
use std::cell::Cell;
let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
let slice = &mut array[..];
let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
for w in slice_of_cells.windows(3) {
Cell::swap(&w[0], &w[2]);
}
assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);1.0.0 · Sourcepub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size does not divide the length of the
slice, then the last chunk will not have length chunk_size.
See chunks_exact for a variant of this iterator that returns chunks of always exactly
chunk_size elements, and rchunks for the same iterator but starting at the end of the
slice.
If your chunk_size is a constant, consider using as_chunks instead, which will
give references to arrays of exactly that length, rather than slices.
§Panics
Panics if chunk_size is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());1.31.0 · Sourcepub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size does not divide the length of the
slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved
from the remainder function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler can often optimize the
resulting code better than in the case of chunks.
See chunks for a variant of this iterator that also returns the remainder as a smaller
chunk, and rchunks_exact for the same iterator but starting at the end of the slice.
If your chunk_size is a constant, consider using as_chunks instead, which will
give references to arrays of exactly that length, rather than slices.
§Panics
Panics if chunk_size is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);1.88.0 · Sourcepub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]
pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]
Splits the slice into a slice of N-element arrays,
assuming that there’s no remainder.
This is the inverse operation to as_flattened.
As this is unsafe, consider whether you could use as_chunks or
as_rchunks instead, perhaps via something like
if let (chunks, []) = slice.as_chunks() or
let (chunks, []) = slice.as_chunks() else { unreachable!() };.
§Safety
This may only be called when
- The slice splits exactly into
N-element chunks (akaself.len() % N == 0). N != 0.
§Examples
let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &[[char; 1]] =
// SAFETY: 1-element chunks never have remainder
unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &[[char; 3]] =
// SAFETY: The slice length (6) is a multiple of 3
unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed1.88.0 · Sourcepub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
Splits the slice into a slice of N-element arrays,
starting at the beginning of the slice,
and a remainder slice with length strictly less than N.
The remainder is meaningful in the division sense. Given
let (chunks, remainder) = slice.as_chunks(), then:
chunks.len()equalsslice.len() / N,remainder.len()equalsslice.len() % N, andslice.len()equalschunks.len() * N + remainder.len().
You can flatten the chunks back into a slice-of-T with as_flattened.
§Panics
Panics if N is zero.
Note that this check is against a const generic parameter, not a runtime value, and thus a particular monomorphization will either always panic or it will never panic.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let (chunks, remainder) = slice.as_chunks();
assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
assert_eq!(remainder, &['m']);If you expect the slice to be an exact multiple, you can combine
let-else with an empty slice pattern:
let slice = ['R', 'u', 's', 't'];
let (chunks, []) = slice.as_chunks::<2>() else {
panic!("slice didn't have even length")
};
assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);1.88.0 · Sourcepub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
Splits the slice into a slice of N-element arrays,
starting at the end of the slice,
and a remainder slice with length strictly less than N.
The remainder is meaningful in the division sense. Given
let (remainder, chunks) = slice.as_rchunks(), then:
remainder.len()equalsslice.len() % N,chunks.len()equalsslice.len() / N, andslice.len()equalschunks.len() * N + remainder.len().
You can flatten the chunks back into a slice-of-T with as_flattened.
§Panics
Panics if N is zero.
Note that this check is against a const generic parameter, not a runtime value, and thus a particular monomorphization will either always panic or it will never panic.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let (remainder, chunks) = slice.as_rchunks();
assert_eq!(remainder, &['l']);
assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);Sourcepub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>
🔬This is a nightly-only experimental API. (array_windows)
pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>
array_windows)Returns an iterator over overlapping windows of N elements of a slice,
starting at the beginning of the slice.
This is the const generic equivalent of windows.
If N is greater than the size of the slice, it will return no windows.
§Panics
Panics if N is zero. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(array_windows)]
let slice = [0, 1, 2, 3];
let mut iter = slice.array_windows();
assert_eq!(iter.next().unwrap(), &[0, 1]);
assert_eq!(iter.next().unwrap(), &[1, 2]);
assert_eq!(iter.next().unwrap(), &[2, 3]);
assert!(iter.next().is_none());1.31.0 · Sourcepub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the end
of the slice.
The chunks are slices and do not overlap. If chunk_size does not divide the length of the
slice, then the last chunk will not have length chunk_size.
See rchunks_exact for a variant of this iterator that returns chunks of always exactly
chunk_size elements, and chunks for the same iterator but starting at the beginning
of the slice.
If your chunk_size is a constant, consider using as_rchunks instead, which will
give references to arrays of exactly that length, rather than slices.
§Panics
Panics if chunk_size is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());1.31.0 · Sourcepub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>
Returns an iterator over chunk_size elements of the slice at a time, starting at the
end of the slice.
The chunks are slices and do not overlap. If chunk_size does not divide the length of the
slice, then the last up to chunk_size-1 elements will be omitted and can be retrieved
from the remainder function of the iterator.
Due to each chunk having exactly chunk_size elements, the compiler can often optimize the
resulting code better than in the case of rchunks.
See rchunks for a variant of this iterator that also returns the remainder as a smaller
chunk, and chunks_exact for the same iterator but starting at the beginning of the
slice.
If your chunk_size is a constant, consider using as_rchunks instead, which will
give references to arrays of exactly that length, rather than slices.
§Panics
Panics if chunk_size is zero.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);1.77.0 · Sourcepub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
pub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.
The predicate is called for every pair of consecutive elements,
meaning that it is called on slice[0] and slice[1],
followed by slice[1] and slice[2], and so on.
§Examples
let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
let mut iter = slice.chunk_by(|a, b| a == b);
assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);This method can be used to extract the sorted subslices:
let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
let mut iter = slice.chunk_by(|a, b| a <= b);
assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
assert_eq!(iter.next(), None);1.0.0 · Sourcepub fn split_at(&self, mid: usize) -> (&[T], &[T])
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
§Panics
Panics if mid > len. For a non-panicking alternative see
split_at_checked.
§Examples
let v = ['a', 'b', 'c'];
{
let (left, right) = v.split_at(0);
assert_eq!(left, []);
assert_eq!(right, ['a', 'b', 'c']);
}
{
let (left, right) = v.split_at(2);
assert_eq!(left, ['a', 'b']);
assert_eq!(right, ['c']);
}
{
let (left, right) = v.split_at(3);
assert_eq!(left, ['a', 'b', 'c']);
assert_eq!(right, []);
}1.79.0 · Sourcepub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])
pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index, without doing bounds checking.
The first will contain all indices from [0, mid) (excluding
the index mid itself) and the second will contain all
indices from [mid, len) (excluding the index len itself).
For a safe alternative see split_at.
§Safety
Calling this method with an out-of-bounds index is undefined behavior
even if the resulting reference is not used. The caller has to ensure that
0 <= mid <= self.len().
§Examples
let v = ['a', 'b', 'c'];
unsafe {
let (left, right) = v.split_at_unchecked(0);
assert_eq!(left, []);
assert_eq!(right, ['a', 'b', 'c']);
}
unsafe {
let (left, right) = v.split_at_unchecked(2);
assert_eq!(left, ['a', 'b']);
assert_eq!(right, ['c']);
}
unsafe {
let (left, right) = v.split_at_unchecked(3);
assert_eq!(left, ['a', 'b', 'c']);
assert_eq!(right, []);
}1.80.0 · Sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])>
pub fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])>
Divides one slice into two at an index, returning None if the slice is
too short.
If mid ≤ len returns a pair of slices where the first will contain all
indices from [0, mid) (excluding the index mid itself) and the
second will contain all indices from [mid, len) (excluding the index
len itself).
Otherwise, if mid > len, returns None.
§Examples
let v = [1, -2, 3, -4, 5, -6];
{
let (left, right) = v.split_at_checked(0).unwrap();
assert_eq!(left, []);
assert_eq!(right, [1, -2, 3, -4, 5, -6]);
}
{
let (left, right) = v.split_at_checked(2).unwrap();
assert_eq!(left, [1, -2]);
assert_eq!(right, [3, -4, 5, -6]);
}
{
let (left, right) = v.split_at_checked(6).unwrap();
assert_eq!(left, [1, -2, 3, -4, 5, -6]);
assert_eq!(right, []);
}
assert_eq!(None, v.split_at_checked(7));1.0.0 · Sourcepub fn split<F>(&self, pred: F) -> Split<'_, T, F>
pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred. The matched element is not contained in the subslices.
§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());1.51.0 · Sourcepub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred. The matched element is contained in the end of the previous
subslice as a terminator.
§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.
let slice = [3, 10, 40, 33];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[3]);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert!(iter.next().is_none());1.27.0 · Sourcepub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
§Examples
let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);
assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);As with split(), if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);1.0.0 · Sourcepub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred, limited to returning at most n items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
§Examples
Print the slice split once by numbers divisible by 3 (i.e., [10, 40],
[20, 60, 50]):
let v = [10, 40, 30, 20, 60, 50];
for group in v.splitn(2, |num| *num % 3 == 0) {
println!("{group:?}");
}1.0.0 · Sourcepub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred limited to returning at most n items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
§Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e., [50], [10, 40, 30, 20]):
let v = [10, 40, 30, 20, 60, 50];
for group in v.rsplitn(2, |num| *num % 3 == 0) {
println!("{group:?}");
}Sourcepub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
🔬This is a nightly-only experimental API. (slice_split_once)
pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
slice_split_once)Splits the slice on the first element that matches the specified predicate.
If any matching elements are present in the slice, returns the prefix
before the match and suffix after. The matching element itself is not
included. If no elements match, returns None.
§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.split_once(|&x| x == 2), Some((
&[1][..],
&[3, 2, 4][..]
)));
assert_eq!(s.split_once(|&x| x == 0), None);Sourcepub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
🔬This is a nightly-only experimental API. (slice_split_once)
pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
slice_split_once)Splits the slice on the last element that matches the specified predicate.
If any matching elements are present in the slice, returns the prefix
before the match and suffix after. The matching element itself is not
included. If no elements match, returns None.
§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.rsplit_once(|&x| x == 2), Some((
&[1, 2, 3][..],
&[4][..]
)));
assert_eq!(s.rsplit_once(|&x| x == 0), None);1.0.0 · Sourcepub fn contains(&self, x: &T) -> boolwhere
T: PartialEq,
pub fn contains(&self, x: &T) -> boolwhere
T: PartialEq,
Returns true if the slice contains an element with the given value.
This operation is O(n).
Note that if you have a sorted slice, binary_search may be faster.
§Examples
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));If you do not have a &T, but some other value that you can compare
with one (for example, String implements PartialEq<str>), you can
use iter().any:
let v = [String::from("hello"), String::from("world")]; // slice of `String`
assert!(v.iter().any(|e| e == "hello")); // search with `&str`
assert!(!v.iter().any(|e| e == "hi"));1.0.0 · Sourcepub fn starts_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
pub fn starts_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
Returns true if needle is a prefix of the slice or equal to the slice.
§Examples
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(v.starts_with(&v));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));Always returns true if needle is an empty slice:
let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));1.0.0 · Sourcepub fn ends_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
pub fn ends_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
Returns true if needle is a suffix of the slice or equal to the slice.
§Examples
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(v.ends_with(&v));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));Always returns true if needle is an empty slice:
let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));1.51.0 · Sourcepub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>
pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>
Returns a subslice with the prefix removed.
If the slice starts with prefix, returns the subslice after the prefix, wrapped in Some.
If prefix is empty, simply returns the original slice. If prefix is equal to the
original slice, returns an empty slice.
If the slice does not start with prefix, returns None.
§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_prefix(&[50]), None);
assert_eq!(v.strip_prefix(&[10, 50]), None);
let prefix : &str = "he";
assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
Some(b"llo".as_ref()));1.51.0 · Sourcepub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>
pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>
Returns a subslice with the suffix removed.
If the slice ends with suffix, returns the subslice before the suffix, wrapped in Some.
If suffix is empty, simply returns the original slice. If suffix is equal to the
original slice, returns an empty slice.
If the slice does not end with suffix, returns None.
§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_suffix(&[50]), None);
assert_eq!(v.strip_suffix(&[50, 30]), None);Sourcepub fn trim_prefix<P>(&self, prefix: &P) -> &[T]
🔬This is a nightly-only experimental API. (trim_prefix_suffix)
pub fn trim_prefix<P>(&self, prefix: &P) -> &[T]
trim_prefix_suffix)Returns a subslice with the optional prefix removed.
If the slice starts with prefix, returns the subslice after the prefix. If prefix
is empty or the slice does not start with prefix, simply returns the original slice.
If prefix is equal to the original slice, returns an empty slice.
§Examples
#![feature(trim_prefix_suffix)]
let v = &[10, 40, 30];
// Prefix present - removes it
assert_eq!(v.trim_prefix(&[10]), &[40, 30][..]);
assert_eq!(v.trim_prefix(&[10, 40]), &[30][..]);
assert_eq!(v.trim_prefix(&[10, 40, 30]), &[][..]);
// Prefix absent - returns original slice
assert_eq!(v.trim_prefix(&[50]), &[10, 40, 30][..]);
assert_eq!(v.trim_prefix(&[10, 50]), &[10, 40, 30][..]);
let prefix : &str = "he";
assert_eq!(b"hello".trim_prefix(prefix.as_bytes()), b"llo".as_ref());Sourcepub fn trim_suffix<P>(&self, suffix: &P) -> &[T]
🔬This is a nightly-only experimental API. (trim_prefix_suffix)
pub fn trim_suffix<P>(&self, suffix: &P) -> &[T]
trim_prefix_suffix)Returns a subslice with the optional suffix removed.
If the slice ends with suffix, returns the subslice before the suffix. If suffix
is empty or the slice does not end with suffix, simply returns the original slice.
If suffix is equal to the original slice, returns an empty slice.
§Examples
#![feature(trim_prefix_suffix)]
let v = &[10, 40, 30];
// Suffix present - removes it
assert_eq!(v.trim_suffix(&[30]), &[10, 40][..]);
assert_eq!(v.trim_suffix(&[40, 30]), &[10][..]);
assert_eq!(v.trim_suffix(&[10, 40, 30]), &[][..]);
// Suffix absent - returns original slice
assert_eq!(v.trim_suffix(&[50]), &[10, 40, 30][..]);
assert_eq!(v.trim_suffix(&[50, 30]), &[10, 40, 30][..]);1.0.0 · Sourcepub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
pub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
Binary searches this slice for a given element. If the slice is not sorted, the returned result is unspecified and meaningless.
If the value is found then Result::Ok is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search_by, binary_search_by_key, and partition_point.
§Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4].
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
assert_eq!(s.binary_search(&13), Ok(9));
assert_eq!(s.binary_search(&4), Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });If you want to find that whole range of matching items, rather than
an arbitrary matching one, that can be done using partition_point:
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let low = s.partition_point(|x| x < &1);
assert_eq!(low, 1);
let high = s.partition_point(|x| x <= &1);
assert_eq!(high, 5);
let r = s.binary_search(&1);
assert!((low..high).contains(&r.unwrap()));
assert!(s[..low].iter().all(|&x| x < 1));
assert!(s[low..high].iter().all(|&x| x == 1));
assert!(s[high..].iter().all(|&x| x > 1));
// For something not found, the "range" of equal items is empty
assert_eq!(s.partition_point(|x| x < &11), 9);
assert_eq!(s.partition_point(|x| x <= &11), 9);
assert_eq!(s.binary_search(&11), Err(9));If you want to insert an item to a sorted vector, while maintaining
sort order, consider using partition_point:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
// If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
// `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
// to shift less elements.
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);1.0.0 · Sourcepub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
Binary searches this slice with a comparator function.
The comparator function should return an order code that indicates
whether its argument is Less, Equal or Greater the desired
target.
If the slice is not sorted or if the comparator function does not
implement an order consistent with the sort order of the underlying
slice, the returned result is unspecified and meaningless.
If the value is found then Result::Ok is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search, binary_search_by_key, and partition_point.
§Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4].
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });1.10.0 · Sourcepub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F,
) -> Result<usize, usize>
pub fn binary_search_by_key<'a, B, F>( &'a self, b: &B, f: F, ) -> Result<usize, usize>
Binary searches this slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key using the same key extraction function.
If the slice is not sorted by the key, the returned result is
unspecified and meaningless.
If the value is found then Result::Ok is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search, binary_search_by, and partition_point.
§Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4].
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
(1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
(1, 21), (2, 34), (4, 55)];
assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a, b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });1.30.0 · Sourcepub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
Transmutes the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle part will be as big as possible under the given alignment constraint and element size.
This method has no purpose when either input element T or output element U are
zero-sized and will return the original slice without splitting anything.
§Safety
This method is essentially a transmute with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U> also apply here.
§Examples
Basic usage:
unsafe {
let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let (prefix, shorts, suffix) = bytes.align_to::<u16>();
// less_efficient_algorithm_for_bytes(prefix);
// more_efficient_algorithm_for_aligned_shorts(shorts);
// less_efficient_algorithm_for_bytes(suffix);
}Sourcepub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
🔬This is a nightly-only experimental API. (portable_simd)
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
portable_simd)Splits a slice into a prefix, a middle of aligned SIMD types, and a suffix.
This is a safe wrapper around slice::align_to, so inherits the same
guarantees as that method.
§Panics
This will panic if the size of the SIMD type is different from
LANES times that of the scalar.
At the time of writing, the trait restrictions on Simd<T, LANES> keeps
that from ever happening, as only power-of-two numbers of lanes are
supported. It’s possible that, in the future, those restrictions might
be lifted in a way that would make it possible to see panics from this
method for something like LANES == 3.
§Examples
#![feature(portable_simd)]
use core::simd::prelude::*;
let short = &[1, 2, 3];
let (prefix, middle, suffix) = short.as_simd::<4>();
assert_eq!(middle, []); // Not enough elements for anything in the middle
// They might be split in any possible way between prefix and suffix
let it = prefix.iter().chain(suffix).copied();
assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
fn basic_simd_sum(x: &[f32]) -> f32 {
use std::ops::Add;
let (prefix, middle, suffix) = x.as_simd();
let sums = f32x4::from_array([
prefix.iter().copied().sum(),
0.0,
0.0,
suffix.iter().copied().sum(),
]);
let sums = middle.iter().copied().fold(sums, f32x4::add);
sums.reduce_sum()
}
let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);1.82.0 · Sourcepub fn is_sorted(&self) -> boolwhere
T: PartialOrd,
pub fn is_sorted(&self) -> boolwhere
T: PartialOrd,
Checks if the elements of this slice are sorted.
That is, for each element a and its following element b, a <= b must hold. If the
slice yields exactly zero or one element, true is returned.
Note that if Self::Item is only PartialOrd, but not Ord, the above definition
implies that this function returns false if any two consecutive items are not
comparable.
§Examples
let empty: [i32; 0] = [];
assert!([1, 2, 2, 9].is_sorted());
assert!(![1, 3, 2, 4].is_sorted());
assert!([0].is_sorted());
assert!(empty.is_sorted());
assert!(![0.0, 1.0, f32::NAN].is_sorted());1.82.0 · Sourcepub fn is_sorted_by<'a, F>(&'a self, compare: F) -> bool
pub fn is_sorted_by<'a, F>(&'a self, compare: F) -> bool
Checks if the elements of this slice are sorted using the given comparator function.
Instead of using PartialOrd::partial_cmp, this function uses the given compare
function to determine whether two elements are to be considered in sorted order.
§Examples
assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
assert!([0].is_sorted_by(|a, b| true));
assert!([0].is_sorted_by(|a, b| false));
let empty: [i32; 0] = [];
assert!(empty.is_sorted_by(|a, b| false));
assert!(empty.is_sorted_by(|a, b| true));1.82.0 · Sourcepub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
Checks if the elements of this slice are sorted using the given key extraction function.
Instead of comparing the slice’s elements directly, this function compares the keys of the
elements, as determined by f. Apart from that, it’s equivalent to is_sorted; see its
documentation for more information.
§Examples
assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));1.52.0 · Sourcepub fn partition_point<P>(&self, pred: P) -> usize
pub fn partition_point<P>(&self, pred: P) -> usize
Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).
The slice is assumed to be partitioned according to the given predicate.
This means that all elements for which the predicate returns true are at the start of the slice
and all elements for which the predicate returns false are at the end.
For example, [7, 15, 3, 5, 4, 12, 6] is partitioned under the predicate x % 2 != 0
(all odd numbers are at the start, all even at the end).
If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.
See also binary_search, binary_search_by, and binary_search_by_key.
§Examples
let v = [1, 2, 3, 3, 5, 6, 7];
let i = v.partition_point(|&x| x < 5);
assert_eq!(i, 4);
assert!(v[..i].iter().all(|&x| x < 5));
assert!(v[i..].iter().all(|&x| !(x < 5)));If all elements of the slice match the predicate, including if the slice is empty, then the length of the slice will be returned:
let a = [2, 4, 8];
assert_eq!(a.partition_point(|x| x < &100), a.len());
let a: [i32; 0] = [];
assert_eq!(a.partition_point(|x| x < &100), 0);If you want to insert an item to a sorted vector, while maintaining sort order:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);Sourcepub fn element_offset(&self, element: &T) -> Option<usize>
🔬This is a nightly-only experimental API. (substr_range)
pub fn element_offset(&self, element: &T) -> Option<usize>
substr_range)Returns the index that an element reference points to.
Returns None if element does not point to the start of an element within the slice.
This method is useful for extending slice iterators like slice::split.
Note that this uses pointer arithmetic and does not compare elements.
To find the index of an element via comparison, use
.iter().position() instead.
§Panics
Panics if T is zero-sized.
§Examples
Basic usage:
#![feature(substr_range)]
let nums: &[u32] = &[1, 7, 1, 1];
let num = &nums[2];
assert_eq!(num, &1);
assert_eq!(nums.element_offset(num), Some(2));Returning None with an unaligned element:
#![feature(substr_range)]
let arr: &[[u32; 2]] = &[[0, 1], [2, 3]];
let flat_arr: &[u32] = arr.as_flattened();
let ok_elm: &[u32; 2] = flat_arr[0..2].try_into().unwrap();
let weird_elm: &[u32; 2] = flat_arr[1..3].try_into().unwrap();
assert_eq!(ok_elm, &[0, 1]);
assert_eq!(weird_elm, &[1, 2]);
assert_eq!(arr.element_offset(ok_elm), Some(0)); // Points to element 0
assert_eq!(arr.element_offset(weird_elm), None); // Points between element 0 and 1Sourcepub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>>
🔬This is a nightly-only experimental API. (substr_range)
pub fn subslice_range(&self, subslice: &[T]) -> Option<Range<usize>>
substr_range)Returns the range of indices that a subslice points to.
Returns None if subslice does not point within the slice or if it is not aligned with the
elements in the slice.
This method does not compare elements. Instead, this method finds the location in the slice that
subslice was obtained from. To find the index of a subslice via comparison, instead use
.windows().position().
This method is useful for extending slice iterators like slice::split.
Note that this may return a false positive (either Some(0..0) or Some(self.len()..self.len()))
if subslice has a length of zero and points to the beginning or end of another, separate, slice.
§Panics
Panics if T is zero-sized.
§Examples
Basic usage:
#![feature(substr_range)]
let nums = &[0, 5, 10, 0, 0, 5];
let mut iter = nums
.split(|t| *t == 0)
.map(|n| nums.subslice_range(n).unwrap());
assert_eq!(iter.next(), Some(0..0));
assert_eq!(iter.next(), Some(1..3));
assert_eq!(iter.next(), Some(4..4));
assert_eq!(iter.next(), Some(5..6));1.79.0 · Sourcepub fn utf8_chunks(&self) -> Utf8Chunks<'_>
pub fn utf8_chunks(&self) -> Utf8Chunks<'_>
Creates an iterator over the contiguous valid UTF-8 ranges of this slice, and the non-UTF-8 fragments in between.
See the Utf8Chunk type for documentation of the items yielded by this iterator.
§Examples
This function formats arbitrary but mostly-UTF-8 bytes into Rust source
code in the form of a C-string literal (c"...").
use std::fmt::Write as _;
pub fn cstr_literal(bytes: &[u8]) -> String {
let mut repr = String::new();
repr.push_str("c\"");
for chunk in bytes.utf8_chunks() {
for ch in chunk.valid().chars() {
// Escapes \0, \t, \r, \n, \\, \', \", and uses \u{...} for non-printable characters.
write!(repr, "{}", ch.escape_debug()).unwrap();
}
for byte in chunk.invalid() {
write!(repr, "\\x{:02X}", byte).unwrap();
}
}
repr.push('"');
repr
}
fn main() {
let lit = cstr_literal(b"\xferris the \xf0\x9f\xa6\x80\x07");
let expected = stringify!(c"\xFErris the 🦀\u{7}");
assert_eq!(lit, expected);
}1.0.0 · Sourcepub fn to_vec(&self) -> Vec<T>where
T: Clone,
pub fn to_vec(&self) -> Vec<T>where
T: Clone,
Copies self into a new Vec.
§Examples
let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.Sourcepub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>
🔬This is a nightly-only experimental API. (allocator_api)
pub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>
allocator_api)Copies self into a new Vec with an allocator.
§Examples
#![feature(allocator_api)]
use std::alloc::System;
let s = [10, 40, 30];
let x = s.to_vec_in(System);
// Here, `s` and `x` can be modified independently.1.0.0 · Sourcepub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output ⓘ
pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output ⓘ
Flattens a slice of T into a single value Self::Output.
§Examples
assert_eq!(["hello", "world"].concat(), "helloworld");
assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);1.3.0 · Sourcepub fn join<Separator>(
&self,
sep: Separator,
) -> <[T] as Join<Separator>>::Output ⓘ
pub fn join<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output ⓘ
Flattens a slice of T into a single value Self::Output, placing a
given separator between each.
§Examples
assert_eq!(["hello", "world"].join(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);1.0.0 · Sourcepub fn connect<Separator>(
&self,
sep: Separator,
) -> <[T] as Join<Separator>>::Output ⓘ
👎Deprecated since 1.3.0: renamed to join
pub fn connect<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output ⓘ
Flattens a slice of T into a single value Self::Output, placing a
given separator between each.
§Examples
assert_eq!(["hello", "world"].connect(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);1.23.0 · Sourcepub fn to_ascii_uppercase(&self) -> Vec<u8> ⓘ
pub fn to_ascii_uppercase(&self) -> Vec<u8> ⓘ
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase.
1.23.0 · Sourcepub fn to_ascii_lowercase(&self) -> Vec<u8> ⓘ
pub fn to_ascii_lowercase(&self) -> Vec<u8> ⓘ
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase.
Trait Implementations§
Source§impl From<Dname> for UncertainDname
impl From<Dname> for UncertainDname
Source§impl FromStr for Dname
impl FromStr for Dname
Source§fn from_str(s: &str) -> Result<Self, Self::Err>
fn from_str(s: &str) -> Result<Self, Self::Err>
Parses a string into an absolute domain name.
The implementation assumes that the string refers to an absolute name
whether it ends in a dot or not. If you need to be able to distinguish
between those two cases, you can use UncertainDname instead.
Source§type Err = FromStrError
type Err = FromStrError
Source§impl<'a> IntoIterator for &'a Dname
impl<'a> IntoIterator for &'a Dname
Source§impl Ord for Dname
impl Ord for Dname
Source§fn cmp(&self, other: &Self) -> Ordering
fn cmp(&self, other: &Self) -> Ordering
Returns the ordering between self and other.
Domain name order is determined according to the ‘canonical DNS name order’ as defined in section 6.1 of RFC 4034.
1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Source§impl Parse for Dname
impl Parse for Dname
Source§impl<N: ToDname> PartialOrd<N> for Dname
impl<N: ToDname> PartialOrd<N> for Dname
Source§fn partial_cmp(&self, other: &N) -> Option<Ordering>
fn partial_cmp(&self, other: &N) -> Option<Ordering>
Returns the ordering between self and other.
Domain name order is determined according to the ‘canonical DNS name order’ as defined in section 6.1 of RFC 4034.
Source§impl ToDname for Dname
impl ToDname for Dname
Source§impl<'a> ToLabelIter<'a> for Dname
impl<'a> ToLabelIter<'a> for Dname
Source§fn iter_labels(&'a self) -> Self::LabelIter
fn iter_labels(&'a self) -> Self::LabelIter
Source§fn starts_with<N: ToLabelIter<'a>>(&'a self, base: &'a N) -> bool
fn starts_with<N: ToLabelIter<'a>>(&'a self, base: &'a N) -> bool
base is a prefix of self.