Type Alias Scalar

Source
pub type Scalar<T> = Tensor<T, ()>;
Expand description

A scalar type, which is a tensor with rank 0.

This is de facto just a number, so it implements Deref and DerefMut into f64.

Aliased Type§

pub struct Scalar<T> { /* private fields */ }

Methods from Deref<Target = f64>§

1.43.0 · Source

pub const RADIX: u32 = 2u32

1.43.0 · Source

pub const MANTISSA_DIGITS: u32 = 53u32

1.43.0 · Source

pub const DIGITS: u32 = 15u32

1.43.0 · Source

pub const EPSILON: f64 = 2.2204460492503131E-16f64

1.43.0 · Source

pub const MIN: f64 = -1.7976931348623157E+308f64

1.43.0 · Source

pub const MIN_POSITIVE: f64 = 2.2250738585072014E-308f64

1.43.0 · Source

pub const MAX: f64 = 1.7976931348623157E+308f64

1.43.0 · Source

pub const MIN_EXP: i32 = -1_021i32

1.43.0 · Source

pub const MAX_EXP: i32 = 1_024i32

1.43.0 · Source

pub const MIN_10_EXP: i32 = -307i32

1.43.0 · Source

pub const MAX_10_EXP: i32 = 308i32

1.43.0 · Source

pub const NAN: f64 = NaN_f64

1.43.0 · Source

pub const INFINITY: f64 = +Inf_f64

1.43.0 · Source

pub const NEG_INFINITY: f64 = -Inf_f64

1.62.0 · Source

pub fn total_cmp(&self, other: &f64) -> Ordering

Returns the ordering between self and other.

Unlike the standard partial comparison between floating point numbers, this comparison always produces an ordering in accordance to the totalOrder predicate as defined in the IEEE 754 (2008 revision) floating point standard. The values are ordered in the following sequence:

  • negative quiet NaN
  • negative signaling NaN
  • negative infinity
  • negative numbers
  • negative subnormal numbers
  • negative zero
  • positive zero
  • positive subnormal numbers
  • positive numbers
  • positive infinity
  • positive signaling NaN
  • positive quiet NaN.

The ordering established by this function does not always agree with the PartialOrd and PartialEq implementations of f64. For example, they consider negative and positive zero equal, while total_cmp doesn’t.

The interpretation of the signaling NaN bit follows the definition in the IEEE 754 standard, which may not match the interpretation by some of the older, non-conformant (e.g. MIPS) hardware implementations.

§Example
struct GoodBoy {
    name: String,
    weight: f64,
}

let mut bois = vec![
    GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
    GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
    GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
    GoodBoy { name: "Chonk".to_owned(), weight: f64::INFINITY },
    GoodBoy { name: "Abs. Unit".to_owned(), weight: f64::NAN },
    GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
];

bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));

// `f64::NAN` could be positive or negative, which will affect the sort order.
if f64::NAN.is_sign_negative() {
    assert!(bois.into_iter().map(|b| b.weight)
        .zip([f64::NAN, -5.0, 0.1, 10.0, 99.0, f64::INFINITY].iter())
        .all(|(a, b)| a.to_bits() == b.to_bits()))
} else {
    assert!(bois.into_iter().map(|b| b.weight)
        .zip([-5.0, 0.1, 10.0, 99.0, f64::INFINITY, f64::NAN].iter())
        .all(|(a, b)| a.to_bits() == b.to_bits()))
}

Trait Implementations§

Source§

impl<T: CoordinateSystem> Deref for Scalar<T>

Source§

type Target = f64

The resulting type after dereferencing.
Source§

fn deref(&self) -> &f64

Dereferences the value.
Source§

impl<T: CoordinateSystem> DerefMut for Scalar<T>

Source§

fn deref_mut(&mut self) -> &mut f64

Mutably dereferences the value.