pub struct DefaultSolout {}Expand description
The default output handler that returns solution values at each solver step.
§Overview
DefaultSolout is the simplest output handler that captures the solution
at each internal step calculated by the solver. It doesn’t perform any
interpolation or filtering - it simply records the exact points that the
solver naturally computes during integration.
§Features
- Captures all solver steps in the output
- No interpolation overhead
- Gives the raw, unmodified solver trajectory
§Example
use differential_equations::prelude::*;
use differential_equations::solout::DefaultSolout;
use nalgebra::{Vector1, vector};
// Simple exponential growth
struct ExponentialGrowth;
impl ODE<f64, Vector1<f64>> for ExponentialGrowth {
fn diff(&self, _t: f64, y: &Vector1<f64>, dydt: &mut Vector1<f64>) {
dydt[0] = y[0]; // dy/dt = y
}
}
// Create the system and solver
let system = ExponentialGrowth;
let t0 = 0.0;
let tf = 2.0;
let y0 = vector![1.0];
let mut solver = ExplicitRungeKutta::dop853().rtol(1e-6).atol(1e-8);
// Use the default output handler explicitly
let mut default_output = DefaultSolout::new();
// Solve with default output
let problem = ODEProblem::new(system, t0, tf, y0);
let solution = problem.solout(&mut default_output).solve(&mut solver).unwrap();
// Note: This is equivalent to the default behavior
let solution2 = problem.solve(&mut solver).unwrap();§Output Characteristics
The output will contain only the actual steps computed by the solver, which may not be evenly spaced in time. The spacing depends on the solver’s adaptive step size control.
For evenly spaced output points, consider using EvenSolout instead.
Implementations§
Trait Implementations§
Source§impl Default for DefaultSolout
impl Default for DefaultSolout
Source§impl<T, V, D> Solout<T, V, D> for DefaultSolout
impl<T, V, D> Solout<T, V, D> for DefaultSolout
Source§fn solout<I>(
&mut self,
t_curr: T,
_t_prev: T,
y_curr: &V,
_y_prev: &V,
_interpolator: &mut I,
solution: &mut Solution<T, V, D>,
) -> ControlFlag<T, V, D>where
I: Interpolation<T, V>,
fn solout<I>(
&mut self,
t_curr: T,
_t_prev: T,
y_curr: &V,
_y_prev: &V,
_interpolator: &mut I,
solution: &mut Solution<T, V, D>,
) -> ControlFlag<T, V, D>where
I: Interpolation<T, V>,
Solout function to choose which points to output during the solving process. Read more
Auto Trait Implementations§
impl Freeze for DefaultSolout
impl RefUnwindSafe for DefaultSolout
impl Send for DefaultSolout
impl Sync for DefaultSolout
impl Unpin for DefaultSolout
impl UnwindSafe for DefaultSolout
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.