Struct APCF4

Source
pub struct APCF4<T: Real, V: State<T>, D: CallBackData> {
    pub h: T,
    pub evals: usize,
    /* private fields */
}
Expand description

Adams-Predictor-Corrector 4th Order Fixed Step Size Method.

The Adams-Predictor-Corrector method is an explicit method that uses the previous states to predict the next state.

The First 3 steps, of fixed step size h, are calculated using the Runge-Kutta method of order 4(5) and then the Adams-Predictor-Corrector method is used to calculate the remaining steps tell the final time.

§Example

use differential_equations::prelude::*;
use differential_equations::ode::methods::adams::APCF4;
use nalgebra::{SVector, vector};

struct HarmonicOscillator {
    k: f64,
}

impl ODE<f64, SVector<f64, 2>> for HarmonicOscillator {
    fn diff(&self, _t: f64, y: &SVector<f64, 2>, dydt: &mut SVector<f64, 2>) {
        dydt[0] = y[1];
        dydt[1] = -self.k * y[0];
    }
}
let mut apcf4 = APCF4::new(0.01);
let t0 = 0.0;
let tf = 10.0;
let y0 = vector![1.0, 0.0];
let system = HarmonicOscillator { k: 1.0 };
let results = ODEProblem::new(system, t0, tf, y0).solve(&mut apcf4).unwrap();
let expected = vector![-0.83907153, 0.54402111];
assert!((results.y.last().unwrap()[0] - expected[0]).abs() < 1e-2);
assert!((results.y.last().unwrap()[1] - expected[1]).abs() < 1e-2);

§Settings

  • h - Step Size

Fields§

§h: T§evals: usize

Implementations§

Source§

impl<T: Real, V: State<T>, D: CallBackData> APCF4<T, V, D>

Source

pub fn new(h: T) -> Self

Trait Implementations§

Source§

impl<T: Real, V: State<T>, D: CallBackData> Default for APCF4<T, V, D>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl<T: Real, V: State<T>, D: CallBackData> Interpolation<T, V> for APCF4<T, V, D>

Source§

fn interpolate(&mut self, t_interp: T) -> Result<V, Error<T, V>>

Interpolate between previous and current step Read more
Source§

impl<T: Real, V: State<T>, D: CallBackData> ODENumericalMethod<T, V, D> for APCF4<T, V, D>

Source§

fn init<F>( &mut self, ode: &F, t0: T, tf: T, y0: &V, ) -> Result<Evals, Error<T, V>>
where F: ODE<T, V, D>,

Initialize ODENumericalMethod before solving ODE Read more
Source§

fn step<F>(&mut self, ode: &F) -> Result<Evals, Error<T, V>>
where F: ODE<T, V, D>,

Step through solving the ODE by one step Read more
Source§

fn t(&self) -> T

Access time of last accepted step
Source§

fn y(&self) -> &V

Access solution of last accepted step
Source§

fn t_prev(&self) -> T

Access time of previous accepted step
Source§

fn y_prev(&self) -> &V

Access solution of previous accepted step
Source§

fn h(&self) -> T

Access step size of next step
Source§

fn set_h(&mut self, h: T)

Set step size of next step
Source§

fn status(&self) -> &Status<T, V, D>

Status of solver
Source§

fn set_status(&mut self, status: Status<T, V, D>)

Set status of solver

Auto Trait Implementations§

§

impl<T, V, D> Freeze for APCF4<T, V, D>
where T: Freeze, V: Freeze, D: Freeze,

§

impl<T, V, D> RefUnwindSafe for APCF4<T, V, D>

§

impl<T, V, D> Send for APCF4<T, V, D>
where V: Send, D: Send,

§

impl<T, V, D> Sync for APCF4<T, V, D>
where V: Sync, D: Sync,

§

impl<T, V, D> Unpin for APCF4<T, V, D>
where T: Unpin, V: Unpin, D: Unpin,

§

impl<T, V, D> UnwindSafe for APCF4<T, V, D>
where T: UnwindSafe, V: UnwindSafe, D: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.