Struct EM

Source
pub struct EM<T: Real, V: State<T>, D: CallBackData> {
    pub h: T,
    /* private fields */
}
Expand description

Euler-Maruyama Method for solving stochastic differential equations.

The Euler-Maruyama method is the simplest numerical method for SDEs, essentially extending Euler’s method to stochastic equations.

For an SDE of the form: dY = a(t,Y)dt + b(t,Y)dW

The Euler-Maruyama update is: Y_{n+1} = Y_n + a(t_n, Y_n)Δt + b(t_n, Y_n)ΔW_n

where ΔW_n is a Wiener process increment, produced by the SDE’s noise method.

§Example

use differential_equations::prelude::*;
use nalgebra::SVector;
use rand::SeedableRng;
use rand_distr::{Distribution, Normal};

struct GBM {
    rng: rand::rngs::StdRng,
}

impl GBM {
    fn new(seed: u64) -> Self {
        Self {
            rng: rand::rngs::StdRng::seed_from_u64(seed),
        }
    }
}

impl SDE<f64, SVector<f64, 1>> for GBM {
    fn drift(&self, _t: f64, y: &SVector<f64, 1>, dydt: &mut SVector<f64, 1>) {
        dydt[0] = 0.1 * y[0]; // μS
    }
     
    fn diffusion(&self, _t: f64, y: &SVector<f64, 1>, dydw: &mut SVector<f64, 1>) {
        dydw[0] = 0.2 * y[0]; // σS
    }
     
    fn noise(&self, dt: f64, dw: &mut SVector<f64, 1>) {
        let normal = Normal::new(0.0, dt.sqrt()).unwrap();
        dw[0] = normal.sample(&mut self.rng.clone());
    }
}

let t0 = 0.0;
let tf = 1.0;
let y0 = SVector::<f64, 1>::new(100.0);
let mut solver = EM::new(0.01);
let gbm = GBM::new(42);
let gbm_problem = SDEProblem::new(gbm, t0, tf, y0);

// Solve the SDE
let result = gbm_problem.solve(&mut solver);

Fields§

§h: T

Implementations§

Source§

impl<T: Real, V: State<T>, D: CallBackData> EM<T, V, D>

Source

pub fn new(h: T) -> Self

Create a new Euler-Maruyama solver with the specified step size

§Arguments
  • h - Step size
§Returns
  • A new solver instance

Trait Implementations§

Source§

impl<T: Real, V: State<T>, D: CallBackData> Default for EM<T, V, D>

Source§

fn default() -> Self

Returns the “default value” for a type. Read more
Source§

impl<T: Real, V: State<T>, D: CallBackData> Interpolation<T, V> for EM<T, V, D>

Source§

fn interpolate(&mut self, t_interp: T) -> Result<V, Error<T, V>>

Interpolate between previous and current step Read more
Source§

impl<T: Real, V: State<T>, D: CallBackData> SDENumericalMethod<T, V, D> for EM<T, V, D>

Source§

fn init<F>( &mut self, sde: &F, t0: T, tf: T, y0: &V, ) -> Result<Evals, Error<T, V>>
where F: SDE<T, V, D>,

Initialize SDENumericalMethod before solving SDE Read more
Source§

fn step<F>(&mut self, sde: &F) -> Result<Evals, Error<T, V>>
where F: SDE<T, V, D>,

Step through solving the SDE by one step Read more
Source§

fn t(&self) -> T

Access time of last accepted step
Source§

fn y(&self) -> &V

Access solution of last accepted step
Source§

fn t_prev(&self) -> T

Access time of previous accepted step
Source§

fn y_prev(&self) -> &V

Access solution of previous accepted step
Source§

fn h(&self) -> T

Access step size of next step
Source§

fn set_h(&mut self, h: T)

Set step size of next step
Source§

fn status(&self) -> &Status<T, V, D>

Status of solver
Source§

fn set_status(&mut self, status: Status<T, V, D>)

Set status of solver

Auto Trait Implementations§

§

impl<T, V, D> Freeze for EM<T, V, D>
where T: Freeze, V: Freeze, D: Freeze,

§

impl<T, V, D> RefUnwindSafe for EM<T, V, D>

§

impl<T, V, D> Send for EM<T, V, D>
where V: Send, D: Send,

§

impl<T, V, D> Sync for EM<T, V, D>
where V: Sync, D: Sync,

§

impl<T, V, D> Unpin for EM<T, V, D>
where T: Unpin, V: Unpin, D: Unpin,

§

impl<T, V, D> UnwindSafe for EM<T, V, D>
where T: UnwindSafe, V: UnwindSafe, D: UnwindSafe,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.